Simplex

4100 / 4120 FIRE ALARM SYSTEM

INSTALLATION INSTRUCTIONS FOR CONTRACTOR (LT0281)

Volume 2 of 3

MANUFACTURER'S DETAILS

APPROVALS: AUSTRALIAN STANDARD AS1603.4 SSL CERTIFICATE OF COMPLIANCE NUMBER 127

The 4100 Fire Indicator Panel is manufactured by:

Simplex International Pty Ltd 140 Old Pittwater Road Brookvale N.S.W 2100 Australia ACN: 008 435 443

Phone: (02)-9466-2333

Notice: The contents of this document is subject to change without notice

NOTICE

FIRST-TIME INSTALLERS OF SIMPLEX 4100+ FIRE ALARM PANELS

AFTER READING THE INFORMATION CONTAINED IN THIS MANUAL, CALL YOU LOCAL SIMPLEX REPRESENTATIVE BEFORE PROCEEDING TO CONNECT FIELD WIRING!

CAUTION

DO NOT APPLY AC OR BATTERY POWER TO THE 4100+ SYSTEM (UNLESS IN THE PRESENCE OF A SIMPLEX TECHNICAL REPRESENTATIVE).

AMENDMENTS TO 4100 /4120 INSTALLATION MANUAL

ISSUE	SECTION/PAGES AMENDED	DATE AMENDED	COMMENTS	ECN No.
1	NIL	04-05-97	Original - File: 41M002.doc	

RELATED DOCUMENTATION

This manual is part of a three volume set relating to the 4100/4120 Fire Alarm Panel. The following lists the documentation relating to the 4100/4120 Fire Alarm Panel

- Volume 1 4100/4120 Fire Indicator Panel Operator Manual. This manual describes the operating procedures for a typical 4100/4120 Fire Indicator Panel.
 4100 Fire Indicator Panel Operator Manual Part No/Document No: 4100-M001 4120 Fire Indicator Panel Operator Manual Part No/Document No: 4100-M004
- Volume 2 4100/4120 Fire Indicator Panel Installation Manual. This manual describes the procedures for installing and commissioning a typical 4100/4120 Fire Indicator Panel. Part No/Document No: 4100-M002
- Volume 3 4100/4120 Fire Indicator Panel Technical Manual. This manual contains technical descriptions of the various components of a typical 4100/4120 Fire Indicator Panel . Part No/Document No: 4100-M003

TABLE OF CONTENTS

RELATED DOCUMENTATION	iii
CONTRACTOR INSTALLATION INSTRUCTIONS	1
INTRODUCTION	1
Supplied Documentation	1
INSTALLATION PROCEDURE	2
1. Inventory the delivered equipment.	2
2. Install the back box.	3
3. Install and tag all system wiring.	3
4. Install the peripheral devices and E.O.L. resistors	3
5. Remove the option bay door. (See Figure 4.)	4
6. Check and terminate all zone (ZN), MAPNET Loops (MAP A , MAP B) and signal (SIG) wiring	5
7. Check and terminate all remaining circuits (AC power, AUX, FB, City, MAPNET II [®] , etc.)	6
8. Dress the panel wiring	6
9. Install the option bay door	6
10. Call your local Simplex Branch Office (listed in the Yellow Pages) to install the printed circuit boards a test the system.	and 6
PROGRAMMER'S REPORT	7
1. General Information (see Figure 5)	7
2. Card Summary by Location (see Figure 6)	8
 3. System Point Summary (see Figure 7) 3.1 Zone Name 3.2 Address 3.3 Custom Label 	8 8 8 9
3.4 Point Type	9
4. System Options Summary (see Figure 8)	11
5. Card Detail Report (see Figure 9)	12
6. Annunciator Report (see Figures 10 and 11)	13
7. Digital Pseudo Point Summary (see Figure 11)	14
8. Analog Pseudo Point Summary (see Figure 12)	17
9. Point List Summary (see Figure 13)	18
10. Point List Detail (see Figure 14)	19
11. Options Detail Report (see Figure 15)	20
12. Network Interface Report (see Figure 16)	21
13. Custom Control Equation Listing (see Figure 17)	22
FIELD WIRING DIAGRAMS	23
BRIGADE CONFIGURATION AND CONNECTION	23

INSTALLATION CHECKLIST FOR SIMPLEX TECHNICAL REPRESENTATIVE	24
VISUAL INSPECTION	25
INSTALL PRINTED CIRCUIT BOARDS	25
CPU/MAIN POWER SUPPLY BOARDS WITH COMPONENTS	29
1. Power-Up Procedures	29
 System Test Procedures	
APPENDIX A	32
TROUBLESHOOTING PROCEDURES	32
A. General Troubleshooting Information	32
B. Troubleshooting Chart	32
APPENDIX B	35
4100 Fault Messages	35
1. CARD TROUBLES	35
2. BATTERY TROUBLES	37
3. EARTH GROUNDS	38
4. ANNUNCIATOR TROUBLES	40
5. MAPNET TROUBLES	41
6. RUI TROUBLES	43
APPENDIX C	44
GLOSSARY OF 4100 FIRE ALARM SYSTEM TERMS	44

FIGURES

FIGURE		PAGE
1	System Hardware Envelope Label	2
2	Location of DIP Switches on Typical Device	3
3	Device Address Label	3
4	Removing the Option Bay Door	5
5	General Information Report	7
6	Card Summary by Location Report	8
7	System Point Summary	10
8	System Options Summary	11
9	Card Detail Report	12
10	Local Annunciator Report	13
11	Digital Pseudo Point Summary1	4-16
12	Analog Pseudo Point Summary	17
13	Point List Summary	18
14	Point List Detail	19
15	Options Detail Report	20
16	Network Interface Report	21
17	Custom Control Equation Listing	22
18	Custom Terminal Wiring Identifiers	26
A1	Voltage Chart	33

TABLES

TABLE

PAGE

1	MAPNET II [®] Addresses	4
2	Acceptable Zone and Signal Circuit Meter Readings	6
3	Printed Circuit Board Addresses	.27
4	All Expansion Cards	.27
5	24 Point Graphic I/O Card Pluggable Resistors	28

CONTRACTOR INSTALLATION INSTRUCTIONS

* * * IMPORTANT * * *

THE INSTALLER IS RESPONSIBLE FOR SAFEGUARDING ALL 4100+ MATERIAL SHIPPED TO THE JOB SITE.

DURING SYSTEM INSTALLATION, STORE ALL 4100+ ITEMS (INCLUDING ALL DOCUMENTATION) IN A CLEAN, DRY AND SAFE PLACE UNTIL NEEDED.

* * * * * * * * * * *

NOTIFY APPROPRIATE PERSONNEL (BUILDING OCCUPANTS, FIRE DEPARTMENT, MONITORING FACILITY, ETC.) IF AN EXISTING SYSTEM MUST BE SHUT DOWN WHILE THE 4100+ SYSTEM IS BEING INSTALLED.

INTRODUCTION

This publication provides a logical sequence of procedures to follow when installing a 4100+ system. Throughout this publication, you are often referred to the documentation listed below. In such cases, notes describing use of the documents will generally follow immediately after the reference.

Supplied Documentation

The envelope that contained this publication also contains the following documents:

- 4100+/4120/UT Back Box Installation Instructions (Pub. No. FA4-21-203)
- Factory Documentation (packed in a clear plastic envelope)
- 4100 Field Wiring Diagram (841-731)
- Field Wiring Diagrams, Smoke Detectors (841-687)
- Field Wiring Diagrams, MAPNET II[®] Devices (841-804)
- 4100/4100+ Fire Alarm Operating Instructions (Pub. No. FA4-31-201)

Except for the last publication, all of the above documents are required for system installation.

INSTALLATION PROCEDURE

NOTES:

- A. Indexes for the 4100 Field Wiring Diagram are found on the first page of the document.
- B. All wiring must be in accordance with local codes.
- C. A page entitled "GENERAL WIRING PRECAUTIONS" is included in the 4100 Field Wiring Diagram.

If possible, proceed through the installation process in the sequence that follows.

1. Inventory the delivered equipment.

* * * IMPORTANT * * *

The contractor **IS NOT** responsible for inventorying or installing daughter cards, or for interconnecting panel components.

- All cartons that contain daughter cards are to be opened, inventoried, and installed by Simplex personnel.
- In addition to the envelope that contained this publication and the material listed in the Packaging Information section of the *Factory Documentation*, supplied material includes an envelope labelled *System Hardware*, as shown in Figure 1.

570210-A

Figure 1 System Hardware Envelope Label

2. Install the back box.

• Use the 4100+/4120/UT Back Box Installation Instructions (Pub. No. FA4-21-203).

3. Install and tag all system wiring.

• See the SYSTEM POINT SUMMARY Report (Figure 7) and the appropriate page in the 4100 Field Wiring Diagram (841-731).

4. Install the peripheral devices and E.O.L. resistors.

• See the Point Type column in the SYSTEM POINT SUMMARY Report for device type.

NOTES:

- A. The 748-200 System Hardware envelope contains the required resistors.
 - 3.3K (monitor zone) resistors are colour coded orange, orange, red (and have a gold tolerance band); 10K (Notification appliance [signal] circuit) resistors are colour coded brown, black, orange (and also have a gold tolerance band).
 - Resistors other than those described above will be used by the Simplex Technical Representative (T.R.) during installation checkout.
- B. Wire peripherals in accordance with the appropriate 4100 Field Wiring Diagram (841-731).
 - Wire a MAPNET II[®] device in accordance with the appropriate **MAPNET II[®] Field Wiring Diagram** (841-804). Then, SET THE DEVICE'S ADDRESS SWITCHES (Figure 2).
- C. A MAPNET II[®] device's address is represented by the final digit(s) in the zone's name.

Examples: The device that connects to a zone named M1-2 must have its switches set to address 2; the device that connects to a zone named M1-117 must have its switches set to address 117.

- See Table 1 for a complete listing of MAPNET II[®] addresses.
- D. Use a small screwdriver or ball point pen to set device address switches.
- E. After setting the device address, mark the device's address label (Figure 3) to agree with the address switches.

Figure 2 Location of DIP Switches on Typical Device Figure 3 Device Address Label

TABLE 1MAPNET II[®] Addresses

SW1-1	SW1-2	SW1-3	SW1-4	SW1-5	SW1-6	SW1-7	SW1-8			SW1-1	SW1-2	SW1-3	SW1-4	SW1-5	SW1-6	SW1-7	SW1-8		
ON	OFF	=	ADDRESS 1	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF	-	ADDRESS 65						
OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	=	ADDRESS 2	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	=	ADDRESS 66
ON	ON	OFF	OFF	OFF	OFF	OFF	OFF	=	ADDRESS 3	ON	ON	OFF	OFF	OFF	OFF	ON	OFF	-	ADDRESS 67
OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	=	ADDRESS 4	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	=	ADDRESS 68
ON	OFF	ON	OFF	OFF	OFF	OFF	OFF	=	ADDRESS 5	ON	OFF	ON	OFF	OFF	OFF	ON	OFF	=	ADDRESS 69
OFF	ON	ON	OFF	OFF	OFF	OFF	OFF	=	ADDRESS 6	OFF	ON	ON	OFF	OFF	OFF	ON	OFF	=	ADDRESS 70
ON	ON	ON	OFF	OFF	OFF	OFF	OFF	=	ADDRESS 7	ON	ON	ON	OFF	OFF	OFF	ON	OFF	=	ADDRESS 71
OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	=	ADDRESS 8	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF	=	ADDRESS 72
ON	OFF	OFF	ON	OFF	OFF	OFF	OFF	=	ADDRESS 9	ON	OFF	OFF	ON	OFF	OFF	ON	OFF	=	ADDRESS 73
OFF	ON	OFF	ON	OFF	OFF	OFF	OFF	=	ADDRESS 10	OFF	ON	OFF	ON	OFF	OFF	ON	OFF	=	ADDRESS 74
ON	ON	OFF	ON	OFF	OFF	OFF	OFF	=	ADDRESS 11	ON	ON	OFF	ON	OFF	OFF	ON	OFF	=	ADDRESS 75
OFF	OFF	ON	ON	OFF	OFF	OFF	OFF	=	ADDRESS 12	OFF	OFF	ON	ON	OFF	OFF	ON	OFF	=	ADDRESS 76
ON	OFF	ON	ON	OFF	OFF	OFF	OFF	=	ADDRESS 13	ON	OFF	ON	ON	OFF	OFF	ON	OFF	=	ADDRESS 77
OFF	ON	ON	ON	OFF	OFF	OFF	OFF	=	ADDRESS 14	OFF	ON	ON	ON	OFF	OFF	ON	OFF	=	ADDRESS 78
ON	ON	ON	ON	OFF	OFF	OFF	OFF	=	ADDRESS 15	ON	ON	ON	ON	OFF	OFF	ON	OFF	=	ADDRESS 79
OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	=	ADDRESS 16	OFF	OFF	OFF	OFF	ON	OFF	ON	OFF	=	ADDRESS 80
ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	=	ADDRESS 17	ON	OFF	OFF	OFF	ON	OFF	ON	OFF	=	ADDRESS 81
OFF	ON	OFF	OFF	ON	OFF	OFF	OFF	=	ADDRESS 18	OFF	ON	OFF	OFF	ON	OFF	ON	OFF	=	ADDRESS 82
ON	ON	OFF	OFF	ON	OFF	OFF	OFF	=	ADDRESS 19	ON	ON	OFF	OFF	ON	OFF	ON	OFF	=	ADDRESS 83
OFF	OFF	ON	OFF	ON	OFF	OFF	OFF	-	ADDRESS 20	OFF	OFF	ON	OFF	ON	OFF	ON	OFF	-	ADDRESS 84
OFF	OFF	ON	OFF	ON	OFF	OFF	OFF	-	ADDRESS 21	OFF	OFF	ON	OFF	ON	OFF	ON	OFF	-	ADDRESS 05
OFF	ON	ON	OFF	ON	OFF	OFF	OFF	-	ADDRESS 22		ON	ON	OFF	ON	OFF	ON	OFF	-	ADDRESS 87
OFF	OFF	OFF	ON	ON	OFF	OFF	OFF	-	ADDRESS 24	OFF	OFF	OFF	ON	ON	OFF	ON	OFF	-	ADDRESS 88
ON	OFF	OFF	ON	ON	OFF	OFF	OFF	-	ADDRESS 25	ON	OFF	OFF	ON	ON	OFF	ON	OFF	-	ADDRESS 89
OFF	ON	OFF	ON	ON	OFF	OFF	OFF	-	ADDRESS 26	OFF	ON	OFF	ON	ON	OFF	ON	OFF	-	ADDRESS 90
ON	ON	OFF	ON	ON	OFF	OFF	OFF	-	ADDRESS 27	ON	ON	OFF	ON	ON	OFF	ON	OFF	-	ADDRESS 91
OFF	OFF	ON	ON	ON	OFF	OFF	OFF	=	ADDRESS 28	OFF	OFF	ON	ON	ON	OFF	ON	OFF	=	ADDRESS 92
ON	OFF	ON	ON	ON	OFF	OFF	OFF	=	ADDRESS 29	ON	OFF	ON	ON	ON	OFF	ON	OFF	=	ADDRESS 93
OFF	ON	ON	ON	ON	OFF	OFF	OFF	=	ADDRESS 30	OFF	ON	ON	ON	ON	OFF	ON	OFF	=	ADDRESS 94
ON	ON	ON	ON	ON	OFF	OFF	OFF	=	ADDRESS 31	ON	ON	ON	ON	ON	OFF	ON	OFF	=	ADDRESS 95
OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	=	ADDRESS 32	OFF	OFF	OFF	OFF	OFF	ON	ON	OFF	=	ADDRESS 96
ON	OFF	OFF	OFF	OFF	ON	OFF	OFF	=	ADDRESS 33	ON	OFF	OFF	OFF	OFF	ON	ON	OFF	=	ADDRESS 97
OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	=	ADDRESS 34	OFF	ON	OFF	OFF	OFF	ON	ON	OFF	=	ADDRESS 98
ON	ON	OFF	OFF	OFF	ON	OFF	OFF	=	ADDRESS 35	ON	ON	OFF	OFF	OFF	ON	ON	OFF	=	ADDRESS 99
OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	=	ADDRESS 36	OFF	OFF	ON	OFF	OFF	ON	ON	OFF	=	ADDRESS 100
ON	OFF	ON	OFF	OFF	ON	OFF	OFF	=	ADDRESS 37	ON	OFF	ON	OFF	OFF	ON	ON	OFF	=	ADDRESS 101
OFF	ON	ON	OFF	OFF	ON	OFF	OFF	=	ADDRESS 38	OFF	ON	ON	OFF	OFF	ON	ON	OFF	=	ADDRESS 102
ON	ON	ON	OFF	OFF	ON	OFF	OFF	=	ADDRESS 39	ON	ON	ON	OFF	OFF	ON	ON	OFF	=	ADDRESS 103
OFF	OFF	OFF	ON	OFF	ON	OFF	OFF	=	ADDRESS 40	OFF	OFF	OFF	ON	OFF	ON	ON	OFF	=	ADDRESS 104
ON	OFF	OFF	ON	OFF	ON	OFF	OFF	=	ADDRESS 41	ON	OFF	OFF	ON	OFF	ON	ON	OFF	=	ADDRESS 105
OFF	ON	OFF	ON	OFF	ON	OFF	OFF	=	ADDRESS 42	OFF	ON	OFF	ON	OFF	ON	ON	OFF	=	ADDRESS 106
ON	ON	OFF	ON	OFF	ON	OFF	OFF	=	ADDRESS 43	ON	ON	OFF	ON	OFF	ON	ON	OFF	=	ADDRESS 107
OFF	OFF	ON	ON	OFF	ON	OFF	OFF	-	ADDRESS 44	OFF	OFF	ON	ON	OFF	ON	ON	OFF	-	ADDRESS 100
OFF		ON	ON	OFF	ON	OFF	OFF	-	ADDRESS 45	OFF	OFF	ON	ON	OFF	ON	ON	OFF	-	ADDRESS 109
ON	ON	ON	ON	OFF	ON	OFF	OFF	-	ADDRESS 47		ON	ON	ON	OFF	ON	ON	OFF	-	ADDRESS 111
OFF	OFF	OFF	OFF	ON	ON	OFF	OFF	-	ADDRESS 48	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	-	ADDRESS 112
ON	OFF	OFF	OFF	ON	ON	OFF	OFF	-	ADDRESS 40		OFF	OFF	OFF	ON	ON	ON	OFF	-	ADDRESS 112
OFF	ON	OFF	OFF	ON	ON	OFF	OFF	-	ADDRESS 50	OFF	ON	OFF	OFF	ON	ON	ON	OFF	-	ADDRESS 114
ON	ON	OFF	OFF	ON	ON	OFF	OFF	-	ADDRESS 51	ON	ON	OFF	OFF	ON	ON	ON	OFF	-	ADDRESS 115
OFF	OFF	ON	OFF	ON	ON	OFF	OFF	-	ADDRESS 52	OFF	OFF	ON	OFF	ON	ON	ON	OFF	-	ADDRESS 116
ON	OFF	ON	OFF	ON	ON	OFF	OFF	-	ADDRESS 53	ON	OFF	ON	OFF	ON	ON	ON	OFF	-	ADDRESS 117
OFF	ON	ON	OFF	ON	ON	OFF	OFF	=	ADDRESS 54	OFF	ON	ON	OFF	ON	ON	ON	OFF	=	ADDRESS 118
ON	ON	ON	OFF	ON	ON	OFF	OFF	=	ADDRESS 55	ON	ON	ON	OFF	ON	ON	ON	OFF	=	ADDRESS 119
OFF	OFF	OFF	ON	ON	ON	OFF	OFF	=	ADDRESS 56	OFF	OFF	OFF	ON	ON	ON	ON	OFF	=	ADDRESS 120
ON	OFF	OFF	ON	ON	ON	OFF	OFF	=	ADDRESS 57	ON	OFF	OFF	ON	ON	ON	ON	OFF	=	ADDRESS 121
OFF	ON	OFF	ON	ON	ON	OFF	OFF	=	ADDRESS 58	OFF	ON	OFF	ON	ON	ON	ON	OFF	=	ADDRESS 122
ON	ON	OFF	ON	ON	ON	OFF	OFF	=	ADDRESS 59	ON	ON	OFF	ON	ON	ON	ON	OFF	=	ADDRESS 123
OFF	OFF	ON	ON	ON	ON	OFF	OFF	=	ADDRESS 60	OFF	OFF	ON	ON	ON	ON	ON	OFF	=	ADDRESS 124
ON	OFF	ON	ON	ON	ON	OFF	OFF	=	ADDRESS 61	ON	OFF	ON	ON	ON	ON	ON	OFF	=	ADDRESS 125
OFF	ON	ON	ON	ON	ON	OFF	OFF	=	ADDRESS 62	OFF	ON	ON	ON	ON	ON	ON	OFF	=	ADDRESS 126
ON	ON	ON	ON	ON	ON	OFF	OFF	=	ADDRESS 63	ON	OFF	=	ADDRESS 127						
OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	=	ADDRESS 64										

NOTES:

- A. Address zero (all switches turned OFF) is not a valid address.
- B. Switch number 8 is never turned ON.

5. Remove the option bay door. (See Figure 4.)

- a. (If applicable) Mark the top of the ribbon cable. Then pull the cable straight out of its connector.
- b. Remove the hair-pin cotter pins (item 1) from the upper clevis pins (item 2). Then push the clevis pins inward and lower the door.
- c. Free the lower end of the retainer cable (item 3) by removing the screw and washer (items 4 and 5).
- d. Remove the hair-pin cotter pins (item 6) from the lower clevis pins (item 7). Then push the clevis pins inward and remove the door.
- e. Store the door and its hardware in a safe, clean and dry place until all wires are terminated in the 4100+ panel.

Figure 4 Removing the Option Bay Door

6. Check and terminate all zone (ZN), MAPNET Loops (MAP A, MAP B) and signal (SIG) wiring.

NOTES:

- A. Use the **CARD SUMMARY BY LOCATION** Report (Figure 6) to determine the location of the motherboard on which each specific circuit terminates.
 - A stock-on "ADDRESS" label on each motherboard identifies that board's number.
- B. The above report is found within the computer printout portion of the Factory Documentation.
- C. Use the terminal identifiers to find specific terminals.
 - See Figure 18 (Custom Terminal Wiring Identifiers) for typical custom terminal wiring identifiers.
- D. Check each circuit for voltages, shorts or opens as follows:
 - 1. With the meter set on 300VAC, read the voltage across the circuit.
 - Meter must read 0 volts.
 - 2. With the meter set on 60VDC, read the voltage across the circuit again (this time in both directions).
 - Meter must read 0 volts.
 - 3. With the meter set on **OHMS x 10** and its (+) and (-) leads connected to the circuit's (+) and (-) wires respectively, check resistance.
 - Readings must compare favourably with those shown in Table 2.
 - If reading indicates an open in a circuit that includes a smoke detector, make sure the detector head(s) are properly mounted and seated.
 - Circuits always read "open" (infinity) if detector power is absent and separately-powered devices (four-wire smoke detectors) are involved.
- E. Connect the wires to their terminals.

TABLE 2 Acceptable Zone and Signal Circuit Meter Readings

Circuit Type	Meter Reading
Style B (formerly Class B) Initiating Device (Zone) Circuit From zone + to zone – (each zone) From zone + to ground	3.3K ohms Infinity
From zone – to ground	Infinity
Style D (formerly Class A) Initiating Device (Zone) Circuit	1
From zone + to ground	Infinity
From zone – to ground	Infinity
From zone + OUT to + IN	Less than 50 ohms
From zone – OUT to – IN	Less than 50 ohms
Style Y (formerly Class B) Notification Appliance Circuit (ea	ach signal circuit)
From + to ground	Infinity
Resistance across circuit	minity
In one direction	10K ohms
In opposite direction	Less than 200 ohms
Style Z (formerly Class A) Notification Appliance Circuit (ea	nch signal circuit)
From + to ground	Infinity
From – to ground	Infinity
From + OUT to + IN	Less than 50 ohms
From – OUT to – IN	Less than 50 ohms
Resistance across circuit	Infinity.
In one direction	Less than 200 ohms
Shielding	
Shield to ground	Infinity
Shield to –	Infinity
Shield to +	Infinity
MAPNET II [®] Loops (ZAMs and IAMs)	
From MAPNET II [®] + to ground	Infinity
From MAPNET II \sim – to ground	Infinity

7. Check and terminate all remaining circuits (AC power, AUX, FB, City, MAPNET II[®], etc.).

8. Dress the panel wiring.

• Use the tie wraps in the System Hardware envelope to neatly dress the panel wiring.

9. Install the option bay door.

10. Call your local Simplex Branch Office (listed in the Yellow Pages) to install the printed circuit boards and test the system.

ONLY SIMPLEX REPRESENTATIVES ARE AUTHORISED TO APPLY AC OR BATTERY POWER TO THE 4100+ SYSTEM.

PROGRAMMER'S REPORT

The Programmer's Report is used to identify peripheral connections within the panel and specifies system operational data.

The 13 sections within the Programmer's Report are shown in Figures 5 through 17, and explained in each section.

1. General Information (see Figure 5)

This section contains branch office required information. It details branch personnel involved with the system, system power data, agency, and software information. The software revision must match the system CFIG chip label for proper operation of the LCD display.

XYZ BUILDING 1 909015J node:1 rev:1	GENERA	L INFORMATION	05:20:54,	 THU,	Page 1 08-MAY-97
4100 Fire Alarm System Simplex Time Recorder Co.					GENERAL INFO
Node Number: 1 System Type: 4100+					
Job Filename : Job Title : Order Number : Customer Contact : Contractor : Salesperson : Branch Number : Branch Location : Programmed by : Agency Approval : NFPA Standard : Standby Generator? : Hours of Standby Battery : Comments : :	909015J XYZ BUILD ACME FIRE JOE FLAME 909 PERTH GF NONE NONE NO	ING 1 ALARMS			
Job Rev : Built Rev : Built Date :	1 0 Current	As Built			
Programmer Rev : System Defaults Rev : Database (DBF) Format : CFIG Format :	 7.02 77 79 0	 			

Figure 5 General Information

2. Card Summary by Location (see Figure 6)

The Card Summary by Location shows the number of cards within the system. This page should be used to verify delivery of system cards from the factory. It also shows a decimal card number which is the address for that printed circuit board. Addresses 3 and 9 are shown below on Custom Terminal Wiring Identifiers.

_____ XYZ BUILDING 1 Page 3 CARD SUMMARY BY LOCATION 909015J node:1 rev:1 05:20:54, THU, 08-MAY-97 _____ CARD CARD LOCATION LISTING: LOCATION LOCAL CONTROLLER UNIT: DAUGHTER CARDS: Card Card Type Zone Range ---_____ ____ (7003) 4100+ Master Controller 0 (7003) 4100+ Master controller (3003) 8 Pt, 3 Amp Relay w/ Feedback (3003) 8 Pt, 3 Amp Relay w/ Feedback (0112) 2120/RS232 Interface 1 AUX3-10 2 AUX11-18 RS232-1, RS232-2 3 4 (6005) Power Supply/Charger (0110) MAPNET Interface M1-1 - 127 6 7 (0110) MAPNET Interface M2-1 - 127 8 (0140) 4120 Network Interface ANNUNCIATORS: Annun Card Card Type Zone Range _____ ____ _____ _____ 0 64 LED / 64 Sw Controller 0 5 (0301) 64 LED / 64 Sw Controller

NO REMOTE CARDS IN SYSTEM

Figure 6 Card Summary by Location

3. System Point Summary (see Figure 7)

The System Point Summary is of primary importance to the installer. Simplex personnel must provide this information prior to installation. Call your local Simplex branch office, which is listed in the Yellow Pages, and request this information be provided. This is used in conjunction with the Layout pages, to determine wiring terminations and the information shown below.

3.1 Zone Name

Zone names reference the custom label to specific points for actual customer wiring. They include monitor zones (ZNx), signals (SIGx), auxiliary relays (AUXx), 24 point I/O (PMx) and feedback (FBx) numbers. Zones, signals, relays, feedbacks, etc., are shown in numerical sequence.

3.2 Address

Each printed circuit board requires a unique address. Address 0 identifies the master termination module. Up to 119 addresses, one per printed circuit board, may be used in a system. Addresses may or may not be in sequential order, but the report always starts with address 0. Two address labels are used for each mother/daughter board combination. The mother board will have its unique address label next to the P.C. board connector. The daughter board will have an identical label.

3.3 Custom Label

The custom label identifies a location within the building or area, and contains additional information concerning each circuit. Also included with the custom label is the corresponding zone name. This ties the custom label to a zone name and allows the installer to identify where field wires are terminated, according to zone name.

Examples:	бTH	FLOOR	NORTH	WING	EXHAUST	FANS	FB25	
	1ST	FLOOR	SOUTH	WING	VISUALS		SIGNAL	2
-	3rd	FLOOR	EAST V	WING S	STROBES		SIGNAL	40

3.4 Point Type

This is the type of device (indicating appliance, initiating device, relays, etc.) connected to each circuit. Each device type is abbreviated. An operational description may also be included in the abbreviation.

Example: AHUM (Air Handling Unit Monitor) PRI (Primary Elevator Capture)

The installer should use the System Point Summary when marking wires to the 4100 panel. These markings should include zones (ZNx+, ZNx--), signals (SIGx), etc., for each circuit within the system. Marking each wire in this matter will facilitate termination and checking of the wiring in the 4100 panel.

NOTE: The SYSTEM POINT SUMMARY Report is found within the computer printout portion of the **Factory Documentation**.

XYZ BUILD 909015J no	ING 1 SYSTEM POINT SUMMA ode:1 rev:1	RY	05	:20:54,	Pa THU, 0	age 4 8-MAY-97
System Po:	int Summary (ascending by zone name):				POINT	SUMMARY ZONE
Zone Name	Custom Label		Device Type	Point Type	PNIS Code	
AUX3	BATTERY TEST OUTPUT AUX3			RELAY		
AUX4	SYSTEM FAULT AUX4			RELAY		
AUX5	FIP BRIGADE ALARM AUX5			RELAY		
AUX6	SIP BRIGADE ALARM AUX6			RELAY		
AUX7	FIP ISOLATE BRIGADE SIGNAL AUX 7			RELAY		
AUX8	FIP ALARM STAFF CALL AUX8			RELAY		
AUX9	FIRE ALARM BELL AUX9			RELAY		
AUX10	SIP ALARM STAFF CALL AUX10			RELAY		
AUX11	SECURITY ACCESS O/RIDE AUX11			RELAY		
AUX12	LEVEL 1 MDH OUTPUT AUX12			RELAY		
AUX13	LEVEL 2 MDH OUTPUT AUX13			RELAY		
AUX14	LEVEL 3 MDH OUTPUT AUX14			RELAY		
AUX15	FIP ALARM TO SIP ISOLATE AUX15			RELAY		
AUX16	SPARE AUX16	5		RELAY		
AUX17	SPARE AUX17	7		RELAY		
AUX18	SPARE AUX18	3		RELAY		
FB3	***** DOOR SWITCH ***** FEEDBACK PT	FB3		ONOFF		
FB4	AUX RELAY CARD 4 FEEDBACK PT FB4			ONOFF		
FB5	AUX RELAY CARD 4 FEEDBACK PT FB5			ONOFF		
FB6	AUX RELAY CARD 4 FEEDBACK PT FB6			ONOFF		
FB7	AUX RELAY CARD 4 FEEDBACK PT FB7			ONOFF		
FB8	AUX RELAY CARD 4 FEEDBACK PT FB8			ONOFF		
FB9	AUX RELAY CARD 4 FEEDBACK PT FB9			ONOFF		
FB10	FIP MCP FEEDBACK PT F	в10		ONOFF		
FB11	AUX RELAY CARD 2 FEEDBACK PT FB11			ONOFF		
FB12	AUX RELAY CARD 2 FEEDBACK PT FB12			ONOFF		
FB13	AUX RELAY CARD 2 FEEDBACK PT FB13			ONOFF		
FB14	AUX RELAY CARD 2 FEEDBACK PT FB14			ONOFF		
FB15	AUX RELAY CARD 2 FEEDBACK PT FB15			ONOFF		
M1-1	LEVEL 1 SOUTH DIRECTOR OF NURSING	Z1	SPHOTO	SMOKE		
M1-2	LEVEL 1 SOUTH STAFF RM	Z1	SPHOTO	SMOKE		
M1-3	LEVEL 1 SOUTH LAUNDRY	Z1	OHEAT	HEAT		
M1-4	LEVEL 1 SOUTH BEDSIT 12 BATHROOM	Z1	OHEAT	HEAT		
M1-5	LEVEL 1 SOUTH BEDSIT 12	Z1	SPHOTO	SMOKE		
M1-6	LEVEL 1 SOUTH KITCHEN STORE RM	Z1	SOHEAT	HEAT		
M1-7	LEVEL 1 SOUTH KITCHEN	Z1	SOHEAT	HEAT		
M1-8	LEVEL 1 SOUTH KITCHEN	Z1	SOHEAT	HEAT		
M1-9	LEVEL 1 SOUTH KITCHEN	Z1	SOHEAT	HEAT		
M1-10	LEVEL 1 SOUTH DINING RM	Z1	SPHOTO	SMOKE		
M1-11	LEVEL 1 SOUTH MALE TOILET	Z1	OHEAT	HEAT		
M1-12	LEVEL 1 SOUTH FEMALE TOILET	Z1	OHEAT	HEAT		
M1-13	LEVEL 1 SOUTH CLEANERS RM	Z1	SPHOTO	SMOKE		

Figure 7 SYSTEM POINT SUMMARY Report

NOTES:

- A. Custom label information tells you where the circuit goes.
- B. At both ends of each circuit, tag wires with zone name and polarity (in cases where polarity applies).
 - For example, SIG 3+ and SIG 3-.
- C. T-tapping is permitted only for Style 4 (formerly Class B) MAPNET Il[®] circuits.

All MAPNET II[®] circuits have zone names that begin with "M".

4. System Options Summary (see Figure 8)

The System Options Summary lists all standard system operations. Enabled operations are shown with the word "YES".

XYZ BUILDING 1 909015J node:1 rev:1	SYSTEM OF	PERATION	05:20:54,	THU,	Page 2 , 08-MAY-9		
					OPTIONS SUMMARY		
Standard System Operations	Enabled?	Settings					
Alarm Silence Inhibit Time Limit Signal Control System Trouble Reminder Dedicated Waterflow Signals. Sprinkler Supv. Operation Alarm Verification Setup Individual Acknowledge Elevator Recall Operation Non-Steady Audible Evac Sig. Non-Steady Visual Evac Sig. Door Holder Operation	NO NO NO NO NO NO NO NO NO	GLOBAL					
Expanded System Operations	Enabled?	Settings					
24-Hr Time/Date Format Coding Group Configuration Audio Coding Configuration Audio Option Configuration Walk Test by Group Non-General Alarm Operation. Pre-Programmed User Lists Temperature in Centigrade Default Local Mode Paging Channel Selection	NO NO NO NO NO YES YES YES NO	12 HOUR					
Other Selections	Enabled?	Settings					
Access Levels Non-Default Passcodes City Connect Custom Control	YES YES	* Form 'C' Dry Co Program: 3, 4,	ontact 5, 6, 7				
* Operation ENABLED. See Optic	ons Detail	Report for full	descriptio	on.			

Figure 8 SYSTEM OPTIONS Summary

5. Card Detail Report (see Figure 9)

The Card Detail Report shows detailed information regarding each printed circuit board as well as software cards (pseudos) in the system. Custom information is shown for each type of card, such as card number, card address (binary), circuits on the card, circuit types, custom labels, and coding information, if applicable.

XYZ BUILDING 1 CARD DETAIL REPORT Page 12 909015J node:1 rev:1 04:39:17, WED, 14-MAY-97 CARD No: 6 (0110) MAPNET Interface CARD 6

	Dev.	Pt.		
Pt.	Туре	Туре	Custom Label	PNIS Code
1	SPHOTO	SMOKE	LEVEL 1 SOUTH DIRECTOR OF NURSING Z1	
2	SPHOTO	SMOKE	LEVEL 1 SOUTH STAFF RM Z1	
3	OHEAT	HEAT	LEVEL 1 SOUTH LAUNDRY Z1	
4	OHEAT	HEAT	LEVEL 1 SOUTH BEDSIT 12 BATHROOM Z1	
5	SPHOTO	SMOKE	LEVEL 1 SOUTH BEDSIT 12 Z1	
6	SOHEAT	HEAT	LEVEL 1 SOUTH KITCHEN STORE RM Z1	
7	SOHEAT	HEAT	LEVEL 1 SOUTH KITCHEN Z1	
8	SOHEAT	HEAT	LEVEL 1 SOUTH KITCHEN Z1	
9	SOHEAT	HEAT	LEVEL 1 SOUTH KITCHEN Z1	
10	SPHOTO	SMOKE	LEVEL 1 SOUTH DINING RM Z1	
11	OHEAT	HEAT	LEVEL 1 SOUTH MALE TOILET Z1	
12	OHEAT	HEAT	LEVEL 1 SOUTH FEMALE TOILET Z1	
13	SPHOTO	SMOKE	LEVEL 1 SOUTH CLEANERS RM Z1	
14	SPHOTO	SMOKE	LEVEL 1 SOUTH CORRIDOR Z1	
15	SPHOTO	SMOKE	LEVEL 1 SOUTH CORRIDOR Z1	
16	SPHOTO	SMOKE	LEVEL 1 CENTRAL CORRIDOR Z2	
17	SPHOTO	SMOKE	LEVEL 1 CENTRAL VISITORS RM Z2	
18	SPHOTO	SMOKE	LEVEL 1 CENTRAL RECREATION RM Z2	
19	SPHOTO	SMOKE	LEVEL 1 CENTRAL RECREATION RM Z2	
20	SPHOTO	SMOKE	LEVEL 1 CENTRAL CORRIDOR Z2	
21	OHEAT	HEAT	LEVEL 1 CENTRAL TOILET Z2	
22	SPHOTO	SMOKE	LEVEL 1 CENTRAL BEDSIT 1 Z2	
23	SPHOTO	SMOKE	LEVEL 1 CENTRAL BEDSIT 2 Z2	
24	SPHOTO	SMOKE	LEVEL 1 CENTRAL BEDSIT 3 Z3	
25	SPHOTO	SMOKE	LEVEL 1 CENTRAL BEDSIT 4 Z3	
26	SPHOTO	SMOKE	LEVEL 1 CENTRAL CORRIDOR Z3	
27	SPHOTO	SMOKE	LEVEL 1 CENTRAL TREATMENT RM Z3	
28	SPHOTO	SMOKE	LEVEL 1 CENTRAL PAN RM Z3	
29	OHEAT	HEAT	LEVEL 1 CENTRAL TOILET Z3	
30	SPHOTO	SMOKE	LEVEL 1 CENTRAL CORRIDOR Z3	
31	OHEAT	HEAT	LEVEL 1 CENTRAL SWITCHBOARD CUPBOARD Z3	
32	SPHOTO	SMOKE	LEVEL 1 CENTRAL SUN RM Z3	
33	PHOTO	SMOKE	LEVEL 1 CENTRAL LIFT MOTOR RM Z4	
34	SPHOTO	SMOKE	LEVEL 1 WEST BEDSIT 5 Z5	
35	SPHOTO	SMOKE	LEVEL 1 WEST BEDSIT 6 Z5	
36	SPHOTO	SMOKE	LEVEL 1 WEST BEDSIT 7 Z5	
37	SPHOTO	SMOKE	LEVEL 1 WEST BEDSIT 8 Z5	
38	SPHOTO	SMOKE	LEVEL 1 WEST BEDSIT 9 Z5	
39	SPHOTO	SMOKE	LEVEL 1 WEST BEDSIT 10 Z5	
40	SPHOTO	SMOKE	LEVEL 1 WEST BEDSIT 11 Z5	

Figure 9 CARD DETAIL Report

6. Annunciator Report (see Figures 10 and 11)

The Local Annunciator Report is shown first (if applicable), followed by the Remote Annunciator Report (if applicable). The first page of these reports shows the controller/card number, position, and the type of display cards selected. The next pages will show the point, switch mode, reference address, reference custom label, and the reference type. A typical Local Annunciator Report is shown in Figure 7.

```
_____
XYZ BUILDING 1
                      CARD DETAIL REPORT
                                                        Page 11
909015J node:1 rev:1
                                            04:39:17, WED, 14-MAY-97
_____
                                                            _ _ _ _ _ _
CARD No: 5
                                                            LED/SW
(0301) 64 LED / 64 Sw Controller
                                                              CARD
UNIT No: 0
                                                                5
addr 00000101
sw1 12345678
CONTROLLER CARD CONFIGURATION DETAIL:
Controller
Card No
           Display Card Display Card Type
             -----
_____
                            _____
   5
               1
                            L403 - 8 Momen Sw/8 Red LED
                2
                            L405 - 8 Momen Sw/16 Red-Yel LED
                            L405 - 8 Momen Sw/16 Red-Yel LED
                3
                            L405 - 8 Momen Sw/16 Red-Yel LED
                4
                5
                            0409 - Blank Display Card
                б
                            0409 - Blank Display Card
                7
                            0409 - Blank Display Card
                8
                            0102 - Battery Meters (amp/volt)
                9
                            0409 - Blank Display Card
               10
                            0409 - Blank Display Card
                            0409 - Blank Display Card
               11
                            0409 - Blank Display Card
               12
               13
                            0409 - Blank Display Card
               14
                            0409 - Blank Display Card
               15
                            0409 - Blank Display Card
                            0409 - Blank Display Card
               16
```

Figure 10 LOCAL ANNUNCIATOR Report

7. Digital Pseudo Point Summary (see Figure 11)

The Digital Pseudo Point Summary shows all digital pseudo points within the system. It also identifies the custom labels, and pseudo type for each digital pseudo point within the system.

_____ XYZ BUILDING 1 DIGITAL PSEUDO POINT SUMMARY Page 10 05:20:54, THU, 08-MAY-97 909015J node:1 rev:1 _____ CARD No: 128 DIGITAL SUMMARY 256 Point Digital Pseudo P0 - P45 Custom Label PNIS Codes Point Type _____ _____ _____ _____ P0 SYSTEM RESET KEY UTILITY P1 ALARM SILENCE KEY UTILITY FRONT PANEL LAMPTEST CONTROL (ANNUNC. 0) FIRE ALARM DETECT GLOBAL ACKNOWLEDGE ENABLE SET SERVICE PSEUDO VALUES Р2 UTTLTTY P3 UTILITY P4 UTILITY Р5 UTILITY ALARM SILENCE Рб UTTLTY P7 EXTRA CARD IN THE SYSTEM TROUBLE P8 KEYPAD ACTIVE UTILITY P9 P10 11 SYSTEM OUT OF CQB'S TROUBLE CODED INPUT ACTIVE UTILITY P11UNACKNOWLEDGEDP12UNACKNOWLEDGEDP13UNACKNOWLEDGEDP14SYSTEM DISABLED - PROGRAMMER DOWNLOADP15CFIG RAM WRITEP16SMPL PROGRAM 0 - SYSTEM DEFAULTP17SMPL PROGRAM 1 - DEFAULT AUDIOP18SMPL PROGRAM 2 - SYSTEM OPTIONS (CODING)P19SMPL 3 - TEST AND MESSAGE HOUSE KEEPINGP20SMPL 4 - GENERAL ALARM AND ACF CONTROLP21SMPL- AZF 1 TO 24 ALARM EQUATIONSP22SOUNDER EQUATIONS HOSTEL 1 & 2P24CODING GROUP 0 ACTIVEP25CODING GROUP 1 ACTIVEP26TOOUD 2 ACTIVE UNACKNOWLEDGED FIRE ALARM EXISTS UTILITY UTILITY UTTLTTY TROUBLE TROUBLE UTTLTY UTTLTTY UTILITY UTILITY UTILITY UTILITY UTILITY UTILITY UTILITY CODING GROUP 0 ACTIVE CODING GROUP 1 ACTIVE CODING GROUP 2 ACTIVE CODING GROUP 3 ACTIVE CODING GROUP 4 ACTIVE CODING GROUP 5 ACTIVE CODING GROUP 6 ACTIVE CODING GROUP 7 ACTIVE CODING GROUP 7 ACTIVE COLD START WARM START UTILITY UTILITY P27 UTTLTY P28 UTILITY P29 UTILITY P30 UTILITY P31 UTILITY P32COLD STARTP33WARM STARTP34CITY DISCONNECTP35MANUAL EVACUATION SWITCH INPUTP36ELEVATOR BYPASSP37DOORHOLDER BYPASSP38CONTROL POINT BYPASSP39SYSTEM EXECUTING FROM RAMP40AUTOMATIC DETECTOR RESETP41MASTER FIRE ALARM ACK KEYP42MASTER SUPERVISORY ACK KEYP43MASTER TROUBLE ACK KEYP44CODING BUS DISABLE SWITCHP45DRILL SWITCH INPUT P32 TROUBLE TROUBLE TROUBLE UTILITY TROUBLE TROUBLE TROUBLE TROUBLE UTTLTY UTTLTTY UTILITY UTILITY UTILITY P45 DRILL SWITCH INPUT UTILITY

XYZ BUILDII 909015J noo	NG 1 DIGITAL PSEUDO POINT SUMMARY de:1 rev:1	05:20:54, THU,	Page 11 08-MAY-97
	1 0 0	DIAIM	
CARD NO:		DIGIT	AL SUMMARY
256 Point I	Digital Pseudo		P46 - P91
			continued
Point	Custom Label	Type PN	IS Codes
P46	DOOR HOLDER TRIGGER	UTILITY	
P47	SIGNALS/VISUALS ACTIVE	UTILITY	
P48	MANUAL EVACUATION	FIRE	
P49	SYSTEM AT ACCESS LEVEL 1 OR GREATER	ͲͲͳͰͳͲΫ	
P50	SYSTEM AT ACCESS LEVEL 2 OR GREATER		
P51	SYSTEM AT ACCESS LEVEL 2 OR CREATER		
DE2	CVCTEM AT ACCESS DEVEL 5 ON GREATER		
PJZ DF2	SISTEM AT ACCESS LEVEL 4		
P53	SYSTEM LIST OVERFLOW - WARM START NEEDED	TROUBLE	
P54	NETWORK MIKE KEYED	0.1.1.1.1.1.7	
P55	CRT KEYPAD INACTIVITY TIMER DISABLE	UTILITY	
P56	CITY CIRCUIT STD TROUBLE RELAY OPERATION	UTILITY	
P57	KEYPAD INACTIVITY TIMER DISABLE	UTILITY	
P58	SYSTEM TIME/DATE INVALID OR NOT SET	TROUBLE	
P59	ALARM VERIFICATION TALLY LIMIT EXCEEDED	TROUBLE	
P60	ALARM VERIFICATION GROUP 0 ACTIVE	UTILITY	
P61	ALARM VERIFICATION GROUP 1 ACTIVE	ŪTTI TY	
P62	ALARM VERTEICATION CROUD 2 ACTIVE		
D62	ALARM VERTICATION CROOL 2 ACTIVE		
P03	ALARM VERIFICATION GROUP 5 ACTIVE		
P04 DCC	ALARM VERIFICATION GROUP 4 ACTIVE		
P65	ALARM VERIFICATION GROUP 5 ACTIVE		
P66	ALARM VERIFICATION GROUP 6 ACTIVE	0.1.1.1.1.1	
P67	ALARM VERIFICATION GROUP 7 ACTIVE	UTILITY	
P68	FIRST STAGE TIMER EXPIRED	UTILITY	
P69	THE EVAC MESSAGE HAS PLAYED	UTILITY	
P70	WALK TEST GROUP 0 ENABLED	TROUBLE	
P71	WALK TEST GROUP 1 ENABLED	TROUBLE	
P72	WALK TEST GROUP 2 ENABLED	TROUBLE	
P73	WALK TEST GROUP 3 ENABLED	TROUBLE	
P74	WALK TEST GROUP 4 ENABLED	TROUBLE	
P75	WALK TEST GROUP 5 ENABLED	TROUBLE	
P76	WALK TEST GROUP 6 ENABLED	TROUBLE	
273 077	WALK TEST GROUP 7 ENABLED	TROUBLE	
177 079	NALK IESI GROOI / ENADLED		
P70	ALARM SILENCE/ALARM COIOUI PSEUDO		
P79	RESEI SPARS WHEN AUDIO CODING COMPLETE		
P80	MASIER MICROPHONE KEYED		
P81	REMOTE MICROPHONE I KEYED	0.1.1.1.1.1	
P82	REMOTE MICROPHONE 2 KEYED	UTILITY	
P83	REMOTE MICROPHONE 1 READY TO TALK	UTILITY	
P84	REMOTE MICROPHONE 2 READY TO TALK	UTILITY	
P85	VTG 1 - ACTIVE	UTILITY	
P86	VTG 2 - ACTIVE	UTILITY	
P87	EVACUATION MESSAGE ON	UTILITY	
P88	EVACUATION MESSAGE OFF	UTILITY	
P89	EVACUATION MESSAGE LED	UTILITY	
P90	ALERT MESSAGE ON	UTTLITY	
D91	ALERT MESSAGE OFF		
1 / 1	MEEKI MEODADE OFF	<u> </u>	

XYZ BUILDII 909015J noo	NG 1 de:1 rev:1	DIGITAL	PSEUDO	POINT	SUMMARY	05:20:54,	THU,	Page 15 08-MAY-97
CARD No: 1 256 Point D	129 Digital Pseudo						DIGIT. P	AL SUMMARY 256 - P406
Point	Custom Label					Туре	PN	IS Codes
P256 P257 P258 P259 P260 P261 P262 P263 P265 P265 P265 P266 P267 P268 P269 P270 P271 P272	***** BELL ISO BRIGADE TEST ALARM TEST FAULT TEST BATTERY TEST ****** ACF'S I BRIGADE 1 TEST BRIGADE 1 TEST BRIGADE 2 TEST ZONE ISOLATED ZONE ISOLATED ZONE ISOLATED ZONE ISOLATED ZONE ISOLATED ZONE ISOLATED ZONE ISOLATED	SOLATED POINT POINT	Y DOOR S BY KEYE	WITCH	***** AZF1 AZF2 AZF3 AZF4 AZF5 AZF6 AZF7 AZF8	SUPERV UTILITY UTILITY UTILITY SUPERV UTILITY SUPERV SUPERV SUPERV SUPERV SUPERV SUPERV SUPERV SUPERV SUPERV SUPERV SUPERV		
XYZ BUILDII 909015J noo	NG 1 de:1 rev:1	DIGITAL	PSEUDO	POINT	SUMMARY	05:20:54,	THU,	Page 17 08-MAY-97
CARD No: 256 Point 1	130 Digital Pseudo						DIGIT. P	AL SUMMARY 512 - P567
Point	Custom Label					Туре	PN	IS Codes
P512 P513 P514 P515 P521 P522 P523 P524 P525 P526 P527 P528	DEFAULT AZF EQ FIP ALARM TEST FIP FAULT TEST FIP MCP ALARM POINTS 0 ALARM POINTS 0	DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY	INPUT		AZF1 AZF1 AZF2 AZF3 AZF4 AZF5 AZF6 AZF7 AZF8	UTILITY FIRE TROUBLE FIRE UTILITY UTILITY UTILITY UTILITY UTILITY UTILITY UTILITY UTILITY		

Figure 11 DIGITAL PSEUDO POINT SUMMARY 8. Analog Pseudo Point Summary (see Figure 12)

The Analog Pseudo Point Summary shows all analog pseudo points within the system. It also identifies the custom labels and pseudo type for each analog pseudo point within the system.

_____ ANALOG PSEUDO POINT SUMMARY Page 24 XYZ BUILDING 1 909015J node:1 rev:1 05:20:54, THU, 08-MAY-97 _____ CARD No: 144 ANALOG SUMMARY 256 Point Analog Pseudo A0 - A45 Point Custom Label Type _____ _____ _____ AΟ NUMBER OF SYSTEM FIRE ALARMS ANALOG NUMBER OF SYSTEM SUPERVISORIES Α1 ANALOG A2 NUMBER OF SYSTEM TROUBLES ANALOG

 NUMBER OF SYSTEM TROUBLES
 ANALOG

 NUMBER OF OLD (UNCLEARED) FIRE ALARMS
 ANALOG

 NUMBER OF OLD (UNCLEARED) SUPERVISORIES
 ANALOG

 NUMBER OF OLD (UNCLEARED) TROUBLES
 ANALOG

 CURRENT HOUR
 ANALOG

 A3 A4 A5 Aб CURRENT MINUTE A7 ANALOG A8 CURRENT SECOND ANALOG CURRENT DAY CURRENT MONTH CURRENT YEAR Α9 ANALOG A10 ANALOG A11 ANALOG CURRENT ACCESS LEVEL ACCESS LEVEL TIMEOUT SYSTEM RESET WINDOW TIMER A12 ANALOG A13 TIMER A14 TIMER SYSTEM RESET WINDOW TIMER SETPOINT A15 ANALOG DETECTOR RESET PULSE TIMER A16 TIMER 4-WIRE RESET RELAY PULSE TIMER FIRE ALARM CLEAR DELAY TIMER FIRE ALARM CLEAR DELAY TIMER SETPOINT FIRE ALARM CLEAR PULSE TIMER A17 TIMER FIRE ALARM CLEAR DELAY IIMER FIRE ALARM CLEAR DELAY TIMER SETPOINT FIRE ALARM CLEAR PULSE TIMER SYSTEM RESET PULSE TIMER ALARM SILENCE INHIBIT TIMER ALARM SILENCE INHIBIT TIMER FIRE ALARM CUTOUT TIMER FIRE ALARM CUTOUT TIMER FIRE ALARM CUTOUT SILENCE PULSE TIMER TROUBLE REMINDER CYCLE TIMER TROUBLE REMINDER OFF-TIME SETPOINT TROUBLE REMINDER ON-TIME SETPOINT DOOR HOLDER ALARM DROP TIMER DOOR HOLDER ALARM DROP TIMER DOOR HOLDER BROWNOUT DROP TIMER DOOR HOLDER BROWNOUT DROP TIMER DOOR HOLDER BROWNOUT DROP TIMER FIRE ALARM AUDIBLE SIGNAL OPERATION A18 TIMER A19 ANALOG A20 TIMER A21 TIMER TIMER A22 A23 ANALOG A24 TIMER ANALOG TIMER TIMER A25 A26 A27 TROUBLE REMINDER OFF-TIME SETPOINT ANALOG TROUBLE REMINDER ON-TIME SETPOINT ANALOG DOOR HOLDER ALARM DROP TIMER TIMEP A28 A29 A30 DOOR HOLDER ALARM DROP TIMER SETPOINTANALOGDOOR HOLDER BROWNOUT DROP TIMERTIMER A31 A32 DOOR HOLDER BROWNOUT DROP TIMER SETPOINT ANALOG A33 DOOR HOLDER BROWNOUT DROP TIMER SETPOINT SYSTEM STARTUP PULSE TIMER FIRE ALARM AUDIBLE SIGNAL OPERATION FIRE ALARM VISUAL SIGNAL OPERATION ALARM VERIFICATION - RETARD TIME ALARM VERIFICATION - RESET TIME ALARM VERIFICATION - CONFIRMATION TIME ALARM VERIFICATION - TALLY LIMIT WALK TEST ABORT TIMEOUT SETPOINT WALK TEST REACTIVATE DELAY SETPOINT MONITOR ZONE ENABLE DELAY SETPOINT CODED INPUT TIMEOUT SETPOINT A34 TIMER A35 ANALOG A36 ANALOG ANALOG A37 A38 ANALOG A39 ANALOG A40 ANALOG ANALOG A41 ANALOG A42 A43 ANALOG A44CODED INPUT TIMEOUT SETPOINTA128PRI2 ALARM CLEAR PULSE TIMERA129PRIORITY 2 RESET PULSE TIMER ANALOG TIMER TIMER

Figure 12 ANALOG PSEUDO POINT SUMMARY

9. Point List Summary (see Figure 13)

The Point List Summary identifies the number of pseudo lists within the system. These lists are in numerical sequence, contain a description, and identify the number of points within each list.

XYZ BUILDING 1 POINT LIST SUMMARY Page 27 909015J node:1 rev:1 05:20:54, THU, 08-MAY-97 CARD No: 160 POINT LIST 256 Point List Pseudo L0 - L42

List Name	Description	Points
L0	CODING GROUP 0 SIGNALS/RELAYS (NON-PNIS)	EMPTY
L1	CODING GROUP 1 SIGNALS/RELAYS	EMPTY
L2	CODING GROUP 2 SIGNALS/RELAYS	EMPTY
L3	CODING GROUP 3 SIGNALS/RELAYS	EMPTY
L4	CODING GROUP 4 SIGNALS/RELAYS	EMPTY
L5	CODING GROUP 5 SIGNALS/RELAYS	EMPTY
LG	CODING GROUP 6 SIGNALS/RELAYS	EMPTY
L7	CODING GROUP 7 SIGNALS/RELAYS	EMPTY
L8	FIRE ALARM SIGNALS OFF ON SILENCE	EMPTY
L9	FIRE ALARM SIGNALS OFF ON RESET	EMPTY
L10	FIRE ALARM RELAYS OFF ON SILENCE	EMPTY
L11	FIRE ALARM RELAYS OFF ON RESET	EMPTY
L12	FIRE ALARM VISUALS OFF ON SILENCE	EMPTY
L13	FIRE ALARM VISUALS OFF ON RESET	EMPTY
L14	TROUBLE RELAYS OFF ON CLEAR	EMPTY
L15	TROUBLE RELAYS OFF ON ACKNOWLEDGE	EMPTY
L16	RELAYS PULSED ON SYSTEM (DETECTOR) RESET	EMPTY
L17	DOOR HOLDER CONTROL RELAYS	EMPTY
L18	GENERAL FIRE ALARM MONITOR ZONES	239
L19	PRIMARY ELEVATOR RECALL MONITOR ZONES	1
L20	ALTERNATE ELEVATOR RECALL MONITOR ZONES	EMPTY
L21	PRIMARY ELEVATOR CAPTURE RELAYS	EMPTY
L22	ALTERNATE ELEVATOR CAPTURE RELAYS	EMPTY
L23	WATERFLOW ALARM MONITOR ZONES	EMPTY
L24	WATERFLOW SIGNALS OFF ON SILENCE	EMPTY
L25	WATERFLOW SIGNALS OFF ON RESET	EMPTY
L26	SPRINKLER SUPERVISORY MONITOR ZONES	EMPTY
L27	SPRINKLER SUPERVISORY SIGNALS/RELAYS	EMPTY
L28	USER SYSTEM LISTS	22
L29	EDITABLE GENERAL ALARM SYSTEM LISTS	22
L30	ALARM VERIFICATION GROUP 0	EMPTY
L31	ALARM VERIFICATION GROUP 1	EMPTY
L32	ALARM VERIFICATION GROUP 2	EMPTY
L33	ALARM VERIFICATION GROUP 3	EMPTY
L34	ALARM VERIFICATION GROUP 4	EMPTY
L35	ALARM VERIFICATION GROUP 5	EMPTY
L36	ALARM VERIFICATION GROUP 6	EMPTY
L37	ALARM VERIFICATION GROUP 7	EMPTY
L38	4 WIRE MONITOR ZONES	EMPTY
L39	NOT USED	EMPTY
L40	WALK TEST GROUP 0	239
L41	WALK TEST GROUP 1	EMPTY
L42	WALK TEST GROUP 2	EMPTY

NOTE: * Indicates Auto List Generation disabled for system list.

Figure 13 POINT LIST SUMMARY

10. Point List Detail (see Figure 14)

The Point List Detail identifies each list (with points identified) within the Point List Summary. It shows the list number, points within the list, custom point labels, and type of device connected to the circuit.

XYZ BUILDING 1 POINT LIST DETAIL Page 32 909015J node:1 rev:1 05:20:54, THU, 08-MAY-97 CARD No: 160 L18 POINT LIST 256 Point List Pseudo LIST No: 18 L18 Description: GENERAL FIRE ALARM MONITOR ZONES

Point Cu	istom P	oint L	abel		Device Type	Point Type
M1-1 LEY	VEL 1	SOUTH	DIRECTOR OF NURSING	Z1	SPHOTO	SMOKE
M1-2 LEY	VEL 1	SOUTH	STAFF RM	Z1	SPHOTO	SMOKE
M1-3 LEY	VEL 1	SOUTH	LAUNDRY	Z1	OHEAT	HEAT
M1-4 LEY	VEL 1	SOUTH	BEDSIT 12 BATHROOM	Z1	OHEAT	HEAT
M1-5 LEY	VEL 1	SOUTH	BEDSIT 12	Z1	SPHOTO	SMOKE
M1-6 LEY	VEL 1	SOUTH	KITCHEN STORE RM	Z1	SOHEAT	HEAT
M1-7 LEY	VEL 1	SOUTH	KITCHEN	Z1	SOHEAT	HEAT
M1-8 LEY	VEL 1	SOUTH	KITCHEN	Z1	SOHEAT	HEAT
M1-9 LEY	VEL 1	SOUTH	KITCHEN	Z1	SOHEAT	HEAT
M1-10 LEY	VEL 1	SOUTH	DINING RM	Z1	SPHOTO	SMOKE

Figure 14 POINT LIST DETAIL

11. Options Detail Report (see Figure 15)

The Options Detail Report specifies the options selected for the system. Also included in this report is a list of the passcode assignment levels for the various system functions.

_____ XYZ BUILDING 1 OPTIONS DETAIL REPORT Page 153 909015J node:1 rev:1 05:20:54, THU, 08-MAY-97 _____ OPTIONS PASSCODES Protection Display Function Level _____ Alarm Silence 1 System Reset 1 Change Time and Date 1 Panel Control Key 1 2 Panel Control Key 2 2 2 Panel Control Key 3 Panel Control Key 4 2 Panel Control Key 5 1 ON/OFF/AUTO Keys 3 ARM/DISARM Keys 4 Change TrueAlarm Sensitivities 3 DISABLE/ENABLE Keys 3 Clear Trouble Log 2 Clear Alarm Log 2 Enter/exit Walk Test mode 2 Clear Alarm Verification tallies 3 * Fire Alarm Acknowledge 1 * Priority 2 Acknowledge 1 * Supervisory Acknowledge 1 * Trouble Acknowledge 1 * Alarm List/Display Time 1 * Change Point Status 4 * Run Diagnostics 4 * Display Diagnostics 4 * Remote Download 4 * Display Idle Time 4 * Memory Access 4

NOTE: * Indicates protected functions not on order sheet.

PROTECTION SCALE Level 1 - Lo Level 4 - Hi

Figure 15 OPTIONS DETAIL REPORT

12. Network Interface Report (see Figure 16)

The Network Interface Report specifies the network points associated with the node and identifies them as either Public Points or External Points (points referenced from other nodes).

 XYZ BUILDING 1 909015J node:1 rev:1	NETWORK INTER	FACE REPORT Page 154 5:20:54, THU, 08-MAY-97
Network Node Network Filename Master Timekeeper Annunciate Missing I	: 1 : SXNET : YES Node : YES	
Point Pt Typ Name	Device Point Type Type	Custom Label
1 PUB 1:1 2 PUB P210 3 PUB P211 4 PUB P212 5 PUB P217 6 PUB P132 7 PUB P134 8 PUB P214 9 PUB P187 10 PUB P47 11 PUB P85 12 PUB P204 256 EXT 2:1 512 EXT 2:P601 513 EXT 2:P602 514 EXT 2:P603 515 EXT 2:P603 516 EXT 2:P603 515 EXT 2:P604 516 EXT 2:P603 517 EXT 2:P604 516 EXT 2:P603 517 EXT 2:P604 516 EXT 2:P605 517 EXT 2:P606 518 EXT 2:P607 519	COMNTBL TROUBLE DIGITAL UTILITY DIGITAL UTILITY DIGITAL UTILITY DIGITAL UTILITY DIGITAL UTILITY DIGITAL TROUBLE DIGITAL TROUBLE DIGITAL TROUBLE DIGITAL UTILITY DIGITAL UTILITY	COMMON TROUBLE POINT FOR NODE: 1 NETWORK DETECTOR RESET NETWORK SYSTEM RESET DETECTOR/SYSTEM RESET NETWORK SIGNAL SILENCE ANALOG SENSOR ALMOST DIRTY LOG ENABLE CLEAR ANALOG SENSOR PEAK VALUE CLEAR VERIFICATION TALLIES VTG & AMPLIFIER TROUBLE DISABLE SIGNALS/VISUALS ACTIVE VTG 1 - ACTIVE NETWORK PRIORITY 2 RESET SIGNALS ACTIVE - OFF ON SILENCE SIGNALS SILENCED COMMON TROUBLE POINT FOR NODE: 2 M1-1 ALARM M1-2 ALARM M1-4 ALARM M1-4 ALARM M1-5 ALARM M1-7 ALARM M1-10 ALARM M1-11 ALARM M1-12 ALARM M1-13 ALARM M1-13 ALARM M1-14 ALARM M1-15 ALARM M1-15 ALARM M1-17 ALARM
529 EXT 2:P618 530 EXT 2:P619 531 EXT 2:P620 532 EXT 2:P621 533 EXT 2:P622	DIGITAL UTILITY DIGITAL UTILITY DIGITAL UTILITY DIGITAL UTILITY DIGITAL UTILITY	MI-18 ALARM M1-19 ALARM M1-20 ALARM M1-21 ALARM M1-22 ALARM

Figure 16 NETWORK INTERFACE REPORT

13. Custom Control Equation Listing (see Figure 17)

The Custom Control Equation Listing displays the line by line Custom Control equations for the system.

_____ XYZ BUILDING 1 CUSTOM CONTROL EQUATION LISTING Page 158 909015J node:1 rev:1 05:20:54, THU, 08-MAY-97 ------_____ CUSTOM CONTROL EQU DETAIL Program: 3 Program: 3 Label: AIU TEST EQUATION 1 Equation 1 COMMENTS: INPUTS: The ON state of: 0-5-1 SWITCH Master's I/O Control Switch 1 AND NOT the ON state of: BRIGADE TEST P257 UTILITY P258 ALARM TEST UTILITY P259 FAULT TEST UTILITY P260 UTILITY BATTERY TEST OUTPUTS: HOLD points ON pri=9,9 P257 UTILITY BRIGADE TEST P262 UTILITY BRIGADE 1 TEST POINT FIP BRIGADE ALARM AUX5 AUX5 RELAY PRINT to Panel "BRIGADE TEST HAS BEEN INITIATED" "BRIGADE TEST HAS BEEN INITIATED" н н END: Label: AIU TEST EQUATION 2 Equation 2 COMMENTS: INPUTS: The ON state of: P257 UTILITY BRIGADE TEST DELAY for 20 secs, running timer is A256 OUTPUTS: HOLD points OFF pri=9,9 BRIGADE 1 TEST POINT P262 UTILITY AUX5 RELAY FIP BRIGADE ALARM AUX5 PRINT to Panel PLEASE WAIT" н ш PLEASE WAIT" END:

Figure 17 CUSTOM CONTROL EQUATION LISTING

FIELD WIRING DIAGRAMS

The Field Wiring Diagrams (841-731) are used when wiring peripheral devices to the 4100 panel. These diagrams provide a pictorial reference on how to terminate wiring on all motherboards in a 4100 system.

Field Wiring Diagrams (841-687) should be available for the installer during installation of all peripheral devices (auxiliary relays, indicating appliances, initiating devices, etc.).

Sheet 1 of both Field Wiring Diagrams is an index, which should be used to identify the correct sheet, for an installation procedure.

BRIGADE CONFIGURATION AND CONNECTION

The Brigade connection point for all 4100/4120 Fire Alarm Panels is taken from the Auxillary Relay Card which is normally located next to the CPU card in the top bay.

The Auxillary Relay card contains Eight Relays numbetred Aux3 to Aux10 and these are allocated as follows:

Aux 3Battery test outputAux 4System FaultAux 5Brigade Alarm 1Aux 6Brigade Alarm 2Aux 7IsolateAux 8SpareAux 9BellAux 10Spare

Marked on the termination label are the connections N.O (Normally Open), N.C. (Normally Closed) and C (Common). These connections are in the de-energised state.

The Fault relay is always held on, in a failsafe mode, by the software. It can be optioned to operate on a general panel fault, if specified by softawre.

The Brigade output is operated by software to energise when an alarm condition exists. It can also be software controlled to be fail safe if required.

The Isolate Relay is operated when a zone is isolated. This output is not totally dedicated for this purpose and can be configured to be used as an ancillary output.

Aux 8 and Aux 10 relays are spare and can be configured as additional ancillary outputs ie Door holder output, air con shutdown, etc

INSTALLATION CHECKLIST FOR SIMPLEX TECHNICAL REPRESENTATIVE

Step		Procedure	Page
	1.	Use the Packing List in the "Layout" pages to verify delivery/availability of all required system hardware. This includes the printed circuit boards.	16
	2.	Unlock, then open the panel door. Remove the retainer by removing the top and bottom screws, then squeeze and pull the two black plastic tabs located on the upper part of the retainer. Lift the retainer from the back box.	
	3.	Visually inspect the 4100 system. Verify that all wiring is connected to the panel, to include the unified ground.	16
	4.	Use a volt/ohmmeter to check system wiring. This includes all wiring to the panel, local and remote annunciators, etc. Check the AC power input to the power supply. Repair required circuits prior to powering up the system.	18
	5.	Check jumpers, switches, capacitors and resistors on all system printed circuit boards. Match the address label on the motherboard to the address label on the daughter board, then install each daughter board.	20
	6.	Install all wiring harnesses and cables (except battery). This includes auxiliary relay and signal cables.	28
	7.	Apply power to the system.	40
		 If the system is trouble-free, perform "System Test Procedures". 	41
		• If the system displays abnormal conditions, perform troubleshooting procedures.	A1

VISUAL INSPECTION

A visual inspection of the panel should be performed prior to installation of printed circuit boards, as they obstruct the view of panel terminations when installed. Visually inspect for the following:

- (a) Neat terminations within the panel.
- (b) System wiring is complete and unused circuits are terminated.
- (c) Terminations are tight.
- (d) Ribbon cables from CPU board are properly installed (both ends).
- (e) Battery cable is connected to the battery test facility P9 of the power master supply or P1 of an expansion power supply.
- (f) Green ground screw is connected to a unified building ground.
- (h) Inspect local and remote annunciators connections.
- (i) Verify that system is clean and free from wire clippings.
- (j) Switches are in the proper position (toggle switches are down).
- (k) Verify that the configuration chip, and revision shown in the main menu, match the Programmer's Report then check the following:

(i)	File name	(8 digits - example: 809005A)
(ii)	Order number	(X digits - example: XXXXXX)
(iii)	Revision number	(3 digits - example: 006)
(iv)	Date	(9 digits - example: 07-JUL-88)

INSTALL PRINTED CIRCUIT BOARDS

There are several types of motherboards and printed circuit boards for the 4100 system. Each printed circuit board must be plugged into its proper motherboard for power and communications with the CPU.

Each 4100 printed circuit board has an 8 bit DIP switch (SW1) which is used to set its address and communication baud rate. Verify each address and baud rate prior to installation of each board. The system may contain up to 119 printed circuit cards (each has its own address). The CPU board is always address 0. Each printed circuit board address is a binary address which corresponds with a Custom Terminal Wiring Identifier (white label) on its motherboard, daughterboard and the Programmer's Report. Match the address label on the motherboard to the address label on the daughterboard, then install each daughterboard. Table 3 (page 26) shows a binary switch setting table which may be used to determine binary address and baud rate. Dip switch positions 2 through 8 are used for addressing, while dip switch position 1 is used for baud rates selection.

Check switch settings, jumpers and resistors on each printed circuit board prior to installation.

Use the Custom Terminal Wiring Identifiers (same address on motherboard and daughterboard), Layout pages and the Programmer's Report to determine proper address and placement for each printed circuit board. The dip switch on each board has been set to its correct binary address at the factory. This binary address corresponds with a Custom Terminal Wiring Identifier (label) on each motherboard. Match the address on the daughter card with the address label on the motherboard, then insert the card. See Figure 6 (Card Detail Report) for card address example and Figure 18 for an example of a Custom Terminal Wiring Identifier (address 5 for card #5 is shown).

Install the printed circuit boards from left to right, and from top to bottom.

Figure 18 Custom Terminal Wiring Identifiers

		1	2 3 MSB	4 5	6 7 8 LSB	 Side	View of Di	o Switch
								OFF
<u>SW-1</u>	<u>SW1-2</u>	<u>SW1-3</u>	<u>SW1-4</u>	<u>SW1-5</u>	<u>SW1-6</u>	<u>SW1-7</u>	<u>SW1-8</u>	
		CPU MODU	ILE IS ALWA	YS ADDRESS	0		CPU	= ADDRESS 0
USED FOR BAUD RATE	ON ON ON ON ON ON ON ON ON ON ON ON ON O	ON ON ON ON ON ON ON ON ON ON ON ON ON O	ON ON ON ON ON ON ON ON ON ON ON ON ON O	ON ON ON ON ON ON OFF OFF OFF OFF OFF OF	ON ON OFF OFF OFF OFF ON ON ON OFF OFF O	ON OFF ON ON OFF ON OFF ON OFF ON OFF ON OFF	OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON	 ADDRESS 1 ADDRESS 2 ADDRESS 3 ADDRESS 4 ADDRESS 5 ADDRESS 6 ADDRESS 7 ADDRESS 8 ADDRESS 9 ADDRESS 10 ADDRESS 11 ADDRESS 12 ADDRESS 13 ADDRESS 14 ADDRESS 15 ADDRESS 16 ADDRESS 17 ADDRESS 18
			со	NTINUES TO	A BINARY 11	9		
ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	= ADDRESS 119

TABLE 3 Printed Circuit Board Addresses

TABLE 4All Expansion Cards

DIP SWITCH SW1									
ADDRESS AND BAUD	RATE S	ELECT							
SWITCH POSITION	#1	#2	#3	#4	#5	#6	#7	#8	
	BRS	MSB						LSB	
BRS = BAUD RATE SELECT 0-9600 baud (INTERNAL/REMOTE)									
ON = 0 OFF = 1									

1 20 3.3K .5W 20 OHM 1V 2 21 3.3K .5W 20 OHM 1V 3 22 3.3K .5W 20 OHM 1V 4 23 3.3K .5W 20 OHM 1V 5 24 3.3K .5W 20 OHM 1V 6 25 3.3K .5W 20 OHM 1V 7 26 3.3K .5W 20 OHM 1V 8 27 3.3K .5W 20 OHM 1V 9 28 3.3K .5W 20 OHM 1V 10 29 3.3K .5W 20 OHM 1V 11 30 3.3K .5W 20 OHM 1V 12 31 3.3K .5W 20 OHM 1V 13 32 3.3K .5W 20 OHM 1V 14 33 3.3K .5W 20 OHM 1V 15 34 3.3K .5W 20 OHM 1V 16 35 3.3K .5W 20 OHM 1V 17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3.3K .5W <th></th> <th>RESISTOR #</th> <th>INPUT</th> <th>OUTPUT</th>		RESISTOR #	INPUT	OUTPUT
2 21 3.3K .5W 20 OHM 1V 3 22 3.3K .5W 20 OHM 1V 4 23 3.3K .5W 20 OHM 1V 5 24 3.3K .5W 20 OHM 1V 6 25 3.3K .5W 20 OHM 1V 7 26 3.3K .5W 20 OHM 1V 8 27 3.3K .5W 20 OHM 1V 9 28 3.3K .5W 20 OHM 1V 9 28 3.3K .5W 20 OHM 1V 10 29 3.3K .5W 20 OHM 1V 11 30 3.3K .5W 20 OHM 1V 12 31 3.3K .5W 20 OHM 1V 13 32 3.3K .5W 20 OHM 1V 14 33 3.3K .5W 20 OHM 1V 15 34 3.3K .5W 20 OHM 1V 16 35 3.3K .5W 20 OHM 1V 17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19	1	20	3.3K .5W	20 OHM 1W
3 22 3.3K 5W 20 OHM 1V 4 23 3.3K 5W 20 OHM 1V 5 24 3.3K 5W 20 OHM 1V 6 25 3.3K 5W 20 OHM 1V 7 26 3.3K 5W 20 OHM 1V 8 27 3.3K 5W 20 OHM 1V 9 28 3.3K 5W 20 OHM 1V 10 29 3.3K 5W 20 OHM 1V 11 30 3.3K 5W 20 OHM 1V 12 31 3.3K 5W 20 OHM 1V 13 32 3.3K 5W 20 OHM 1V 14 33 3.3K 5W 20 OHM 1V 15 34 3.3K 5W 20 OHM 1V 16 35 3.3K 5W 20 OHM 1V	2	21	3.3K .5W	20 OHM 1W
4 23 3.3K .5W 20 OHM 1V 5 24 3.3K .5W 20 OHM 1V 6 25 3.3K .5W 20 OHM 1V 7 26 3.3K .5W 20 OHM 1V 8 27 3.3K .5W 20 OHM 1V 9 28 3.3K .5W 20 OHM 1V 10 29 3.3K .5W 20 OHM 1V 11 30 3.3K .5W 20 OHM 1V 12 31 3.3K .5W 20 OHM 1V 13 32 3.3K .5W 20 OHM 1V 14 33 3.3K .5W 20 OHM 1V 15 34 3.3K .5W 20 OHM 1V 16 35 3.3K .5W 20 OHM 1V 17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3.3K .5W 20 OHM 1V	3	22	3.3K .5W	20 OHM 1W
5 24 3.3K .5W 20 OHM 1V 6 25 3.3K .5W 20 OHM 1V 7 26 3.3K .5W 20 OHM 1V 8 27 3.3K .5W 20 OHM 1V 9 28 3.3K .5W 20 OHM 1V 10 29 3.3K .5W 20 OHM 1V 10 29 3.3K .5W 20 OHM 1V 11 30 3.3K .5W 20 OHM 1V 12 31 3.3K .5W 20 OHM 1V 13 32 3.3K .5W 20 OHM 1V 14 33 3.3K .5W 20 OHM 1V 15 34 3.3K .5W 20 OHM 1V 16 35 3.3K .5W 20 OHM 1V 17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3.3K .5W 20 OHM 1V	4	23	3.3K .5W	20 OHM 1W
6 25 3.3K 5W 20 OHM 1V 7 26 3.3K 5W 20 OHM 1V 8 27 3.3K 5W 20 OHM 1V 9 28 3.3K 5W 20 OHM 1V 10 29 3.3K 5W 20 OHM 1V 11 30 3.3K 5W 20 OHM 1V 12 31 3.3K 5W 20 OHM 1V 13 32 3.3K 5W 20 OHM 1V 14 33 3.3K 5W 20 OHM 1V 15 34 3.3K 5W 20 OHM 1V 16 35 3.3K 5W 20 OHM 1V 17 36 3.3K 5W 20 OHM 1V 18 37 3.3K 5W 20 OHM 1V 19 38 3.3K 5W 20 OHM 20 <	5	24	3.3K .5W	20 OHM 1W
7 26 3.3K 5W 20 OHM 1V 8 27 3.3K 5W 20 OHM 1V 9 28 3.3K 5W 20 OHM 1V 10 29 3.3K 5W 20 OHM 1V 11 30 3.3K 5W 20 OHM 1V 12 31 3.3K 5W 20 OHM 1V 13 32 3.3K 5W 20 OHM 1V 14 33 3.3K 5W 20 OHM 1V 15 34 3.3K 5W 20 OHM 1V 16 35 3.3K 5W 20 OHM 1V 17 36 3.3K 5W 20 OHM 1V 18 37 3.3K 5W 20 OHM 1V 19 38 3.3K 5W 20 OHM 1V 20 39 3.3K 5W 20 OHM 1V	6	25	3.3K .5W	20 OHM 1W
8 27 3.3K 5W 20 OHM 1V 9 28 3.3K 5W 20 OHM 1V 10 10 29 3.3K 5W 20 OHM 1V 10 10 29 3.3K 5W 20 OHM 1V 11 30 3.3K 5W 20 OHM 1V 11 30 3.3K .5W 20 OHM 1V 11 11 30 3.3K .5W 20 OHM 1V 12 31 3.3K .5W 20 OHM 1V 11	7	26	3.3K .5W	20 OHM 1W
9 28 3.3K 5W 20 OHM 1V 10 29 3.3K 5W 20 OHM 1V 11 30 3.3K 5W 20 OHM 1V 12 31 3.3K 5W 20 OHM 1V 13 32 3.3K 5W 20 OHM 1V 14 33 3.3K 5W 20 OHM 1V 15 34 3.3K 5W 20 OHM 1V 16 35 3.3K 5W 20 OHM 1V 17 36 3.3K 5W 20 OHM 1V 18 37 3.3K 5W 20 OHM 1V 19 38 3.3K 5W 20 OHM 1V 20 39 3.3K 5W 20 OHM 1V	8	27	3.3K .5W	20 OHM 1W
10 29 3.3K 5W 20 OHM 1V 11 30 3.3K 5W 20 OHM 1V 12 31 3.3K 5W 20 OHM 1V 13 32 3.3K 5W 20 OHM 1V 14 33 3.3K 5W 20 OHM 1V 15 34 3.3K 5W 20 OHM 1V 16 35 3.3K 5W 20 OHM 1V 17 36 3.3K 5W 20 OHM 1V 18 37 3.3K 5W 20 OHM 1V 19 38 3.3K 5W 20 OHM 1V 20 39 3.3K 5W 20 OHM 1V	9	28	3.3K .5W	20 OHM 1W
11 30 3.3K .5W 20 OHM 1V 12 31 3.3K .5W 20 OHM 1V 13 32 3.3K .5W 20 OHM 1V 14 33 3.3K .5W 20 OHM 1V 15 34 3.3K .5W 20 OHM 1V 16 35 3.3K .5W 20 OHM 1V 17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3 3K .5W 20 OHM 1V	10	29	3.3K .5W	20 OHM 1W
12 31 3.3K .5W 20 OHM 1V 13 32 3.3K .5W 20 OHM 1V 14 33 3.3K .5W 20 OHM 1V 15 34 3.3K .5W 20 OHM 1V 16 35 3.3K .5W 20 OHM 1V 17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3 3K .5W 20 OHM 1V	11	30	3.3K .5W	20 OHM 1W
13 32 3.3K .5W 20 OHM 1V 14 33 3.3K .5W 20 OHM 1V 15 34 3.3K .5W 20 OHM 1V 16 35 3.3K .5W 20 OHM 1V 17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3 3K .5W 20 OHM 1V	12	31	3.3K .5W	20 OHM 1W
14 33 3.3K 5W 20 OHM 1V 15 34 3.3K 5W 20 OHM 1V 16 35 3.3K 5W 20 OHM 1V 17 36 3.3K 5W 20 OHM 1V 18 37 3.3K 5W 20 OHM 1V 19 38 3.3K 5W 20 OHM 1V 20 39 3 3K 5W 20 OHM 1V	13	32	3.3K .5W	20 OHM 1W
15 34 3.3K 5W 20 OHM 1V 16 35 3.3K 5W 20 OHM 1V 17 36 3.3K 5W 20 OHM 1V 18 37 3.3K 5W 20 OHM 1V 19 38 3.3K 5W 20 OHM 1V 20 39 3 3K 5W 20 OHM 1V	14	33	3.3K .5W	20 OHM 1W
16 35 3.3K 5W 20 OHM 1V 17 36 3.3K 5W 20 OHM 1V 18 37 3.3K 5W 20 OHM 1V 19 38 3.3K 5W 20 OHM 1V 20 39 3.3K 5W 20 OHM 1V	15	34	3.3K .5W	20 OHM 1W
17 36 3.3K .5W 20 OHM 1V 18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3.3K .5W 20 OHM 1V	16	35	3.3K .5W	20 OHM 1W
18 37 3.3K .5W 20 OHM 1V 19 38 3.3K .5W 20 OHM 1V 20 39 3 3K .5W 20 OHM 1V	17	36	3.3K .5W	20 OHM 1W
19 38 3.3K .5W 20 OHM 1W	18	37	3.3K .5W	20 OHM 1W
	19	38	3.3K .5W	20 OHM 1W
	20	39	3.3K .5W	20 OHM 1W
21 40 3.3K .5W 20 OHM 1V	21	40	3.3K .5W	20 OHM 1W
22 41 3.3K .5W 20 OHM 1V	22	41	3.3K .5W	20 OHM 1W
23 42 3.3K .5W 20 OHM 1V	23	42	3.3K .5W	20 OHM 1W
24 43 3.3K .5W 20 OHM 1V	24	43	3.3K .5W	20 OHM 1W

TABLE 524 Point Graphic I/O Card Pluggable Resistors(632-789)

NOTE: Systems are shipped from the factory with 3.3K OHM resistors. Use 3.3K OHM resistors for contact monitors and 20 OHM resistors for RELAY or LED/lamp outputs.

CPU/MAIN POWER SUPPLY BOARDS WITH COMPONENTS

1. Power-Up Procedures

When power is first applied to the panel, or when the processor has been reset, the system will self-test the integrity of its memory and verify proper card installation. At the end of the self-test, the system will display "SYSTEM STARTUP IN PROGRESS" followed by at least two fault conditions (battery and time and date). After the battery is connected and the time and date has been entered, the system should then display the message "SYSTEM IS NORMAL" along with the time and date.

- **Notes:** (i) When a printed circuit board is not properly inserted, the system will display a fault condition.
 - (ii) When a printed circuit board is inserted, but configured incorrectly or not defined in software, the system will display a fault condition, normal operation will be suspended for that card until the fault has been corrected.
 - Other failures will cause a message to be displayed to the operator, may cause the system to become inoperative and the tone alert to sound continuously.
 Refer Appendic A for a list of Fault Messages and likely causes and rectification

To power up the 4100 system, perform the following steps:

- (a) Ensure that the mains isolate switch is OFF <u>and batteries are disconnected</u>. Ensure that 240V AC supply is connected to the panel from the mains distribution board.
- (b) Turn the panel mains isolate switch ON. When the green Power LED turns on (after approximately 30 seconds), <u>connect the batteries.</u>
- (c) Acknowledge all abnormal conditions by pressing the appropriate "ACK" (Alarm and Fault) pushbutton(s). Press the "ACK" pushbutton to review all abnormal conditions within each list. Once all abnormal conditions are cleared, press the "CLR" key.
- (d) Set the correct time and date. The system should then display "SYSTEM IS NORMAL" followed by the time and date.
- (e) Repair/restore all abnormal conditions. (refer Appendix A Trouble shooting Procedures)

2. System Test Procedures

Note: These procedures should be followed when the system is first installed, during periodic tests, or as required by local code. Check local codes to determine how frequently your system should be tested. Always inform appropriate personnel that you will be testing the system (city Fire Brigade, customer, etc.).

2.1 Battery Test

The battery test is performed to determine battery status. To test the batteries, perform the following procedures:

- (a) Unlock, then open the panel door and remove the retainer.
- (b) Read the battery labels. If either battery is more than 4 years old, replace the battery(s).
- (c) Press the battery test key, the system will load the battery for one minute and signal a fault if the test fails.

2.2 Brigade Test

Press the Brigade test key to activate the brigade alarm relay and send an alarm signal to the fire brigade

2.3 Alarm Test

Press the Alarm test key to perform an alarm test on all zones.

Note: Under Alarm Test, the brigade relay will operate as well as any other ancillary outputs that have been programmed to operate under alarm conditions. It may be necessary to use the ACF Isolate function to isolate the ancillary outputs is these are not to be activated.

2.4 Lamp Test

The lamp test pushbutton on the control panel is used to determine local lamp failures within the system. Only lamps on the 4100 control panel will illuminate along with the five function and acknowledge LEDs. All segments on the LCD will also change. Perform the following procedures to determine lamp failure:

(a) Press the "LAMP TEST" pushbutton.

All LEDs should illuminate (lamps should stay illuminated as long as the pushbutton is depressed). Holding the Lamp Test pushbutton in for more than three seconds will test the piezo.

- (b) Perform an individual lamp test on all remote annunciators, to include the 24 point I/Os, RCUs, SCUs and LED/switch modules.
- (c) Remove and replace defective lamp(s).

Note: The serial annunciator lamps/LEDs will not illuminate during the lamp test.

2.5 Remounting Retainer

- (a) Install the retainer assembly onto the back box assembly utilising the two bottom hook-tabs and secure it by using two plastic squeeze release tabs located on the upper centre of the retainer assembly.
- (b) Install two screws to secure the retainer assembly, one at the top centre of the retainer assembly and the other at the bottom centre of the retainer assembly.

Note: The two screws must be installed to ensure proper ESD (electro-static discharge) protection.

(c) Close and lock the door assembly.

APPENDIX A

TROUBLESHOOTING PROCEDURES

A. General Troubleshooting Information

Before troubleshooting the system, notify the customer and monitoring facility that you are repairing the system and may trip an alarm. Local codes may require notification of additional personnel, therefore check local codes for these requirements.

Tools required are a multimeter, side cutting pliers, IC removal/insertion tool (optional) and two sizes of screwdriver to accomplish these procedures. It is also recommended that Field Wiring Diagrams be used as required.

B. Troubleshooting Chart

The "Voltage Chart" shown on the following page contains voltage readings for various motherboard terminals and connectors and is to be used as required. Do not take voltage readings on the system printed circuit board IC's.

When troubleshooting the 4100 system, check the obvious things first. These are the LEDs, toggle switches, dip switch settings, power, clipped jumpers, resistors, city jumpers and wiring to include contractor installed field wiring, all of which are located in the fire alarm panel. Perform a visual inspection of the panel.

The following indications should be observed on the fire alarm panel.

- (i) Normal LED indications.
 - (a) Green "Power" LED is illuminated.
 - (b) All other LEDs are OFF.

Note: If the green power LED is not illuminated, check the AC input voltage.

- (ii) Toggle switches are in the down (normal) position.
- (iii) Fuses are good and are the correct values.
- (iv) Ensure dip switches are properly set.
- (v) Field wiring is correct (see Field Wiring Diagrams).
- (vi) Correct jumpers and resistors are clipped.
- (vii) Ribbon cables are properly installed.

If the alphanumeric display shows an abnormal indication on a module, troubleshoot that circuit/printed circuit board first. Check the return field wiring to that printed circuit board to ensure proper voltage and signals are present. If these signals and voltages are incorrect, the printed circuit board is probably defective.

If the visual inspection of the panel was normal, and the voltages are correct, the next step in sectionalisation is to test the return field wires from the peripheral devices. This is the next section to troubleshoot because proper voltage terminals are accessible which allows these checks to be made quickly. Check for incorrect voltage or signal with voltmeter. If an incorrect reading is observed, you know the defective printed circuit board is the one you are testing.

If the voltage and signals are correct on the return field wiring, the next step is to localise the trouble by swapping printed circuit boards of the same type. Perform the following procedure to swap printed circuit boards:

- 1. Disconnect battery power.
- 2. Turn system power OFF (AC).
- 3. Remove the suspected printed circuit board from the motherboard.
- 4. Remove a printed circuit board of the same type from the system (when available) or from branch stock.
- 5. Set the "good" printed circuit board address to match the white "address label" on the motherboard (where the "bad" printed circuit card was located). If a printed circuit board is swapped from within the system, set the "bad" printed circuit board address to match the white "address label" on the motherboard (where the "good" printed circuit board was located).
- 6. Install both printed circuit boards ("good" and "bad").
- 7. Apply AC power to the system.
- 8. Apply DC power to the system.
- 9. "ACK" all abnormal conditions.

If the visual indications change, the problem is in the "bad" printed circuit board. If the symptoms do not change, check inputs and outputs from the now "good" printed circuit board.

Voltages and signals on the terminals should match the Voltage Chart shown below. Note the voltages given in the chart are with reference to the negative (-) of the 24V power Supply. When field wiring is removed, remove and mark one wire at a time. Ensure that the wiring is properly replaced to prevent additional fault indications. Use the Voltage Chart as required.

	Positive Terminal	Negative Terminal	
	28 VDC	3 VDC	Normal Circuit
MONITOR	28 VDC	6-18 VDC	Current Limited Alarm
CIRCUIT	28 VDC	28 VDC	Short Circuit Alarm
	28 VDC	0 VDC	Open Circuit
	7 VDC	28 VDC	Normal Circuit
SIGNAL	28 VDC	0 VDC	Alarm Condition
CIRCUIT	0 VDC	28 VDC	Open Circuit
	16 VDC	28 VDC	Installed Reverse Polarity
	28 VDC	25 VDC	Normal Circuit
SUPERVISED	28 VDC	0 VDC Pulsing	Alarm Condition
ANNUNCIATOR	0 VDC	0 VDC	Lost Annunciation Common
	28 VDC	0 VDC	Open Circuit

Figure A1 Voltage Chart 10. Verify the ground status of the system by connecting the negative (black) lead of a voltmeter to the Earth Ground and connect the positive (red) lead of the voltmeter to the positive (+) terminal of the 24V DC supply and check for the following readings:

Voltage Reading 12-14V DC 6-12V DC 15-21V DC **Circuit Status** Normal Partial Negative Ground Partial Positive Ground

APPENDIX B

4100 Fault Messages

1. CARD TROUBLES

If the LCD displays ... Wrong Card Abnormal

O 1st Line Shows Card Expected at this Address.

Reprogram System or Insert Proper Daughter Card.

If the LCD displays ... Extra Card Abnormal

O A Daughter Card is/was installed but not Programmed.

Reprogram System or Remove Extra Daughter Card.

Warm Start is Necessary to Clear this Trouble Condition. Press the CPU Reset Switch located on the Master Controller Board.

If the LCD displays ... Card Missing/Failed

- O Identify Card from LCD.
- O Is Communication Trouble LED illuminated on Card ?
- O Check Dipswitch Setting with Programmer's Report.
- O Check for 8VDC & 24VDC at Motherboard Harness P3.
- O Check for Serial Comm at Motherboard Harness P2.
- If ALL Daughter Cards Report Missing/Failed Check Serial Comm fuse on Master Controller Board (F6).
- If this Trouble only Occurs upon Alarm, Alarm Silence or System Reset it may be Caused by Unsuppressed Relays, Door Magnets, High Current Loads, etc.

2. BATTERY TROUBLES

If the LCD displays ... Master Battery Backup Status is Trouble

- O Check connector P9 on Master Power Supply.
- O Check that Batteries Terminals are Connected.
- O Check Fuse(s) in the Battery Harness.
- O Check for Charger Output at Battery Harness Terminals with the Batteries Disconnected.
- Measure Battery voltage with Terminals from Harness Disconnected. (>18 VDC)
- O Test Batteries under load for 1 minutes. (>23 VDC)

3. EARTH GROUNDS

If the LCD displays ... Master Earth Status is Trouble

- O Is Ground on Positive/Negative side of Power Supply ?
- O If a Positive Ground ... Remove half of the Motherboards.

Isolated to a Row ... Remove half of the Daughter cards.

- O If a Negative Ground ... Check Power, MAPNET and Shields.
- O Ground could be Internal to the Control Panels.

If the LCD displays ... MAPNET Ground Fault Status is Abnormal

- O Determine which MAPNET Power Supply is Reporting Ground.
- Verify that JW2 is Installed and JW1 is Removed unless only 2 Wire Devices are used.
- O Disconnect MAPNET Communication Lines.
- O Disconnect MAPNET Power Supply Connector P4.

4. ANNUNCIATOR TROUBLES

If the LCD displays ...

Card X, Led (Switch) Display Slot X Card Defined But Not Inserted

O Annunciator Display Card Programmed in Software but not connected via the Ribbon Cable.

If the LCD displays ...

Card X, Led (Switch) Display Slot X Card Not Defined But Inserted

- Annunciator Display Card not Programmed in Software but connected via the Ribbon Cable.
- * Check ribbon cable or Verify Annunciator Programming.

5. MAPNET TROUBLES

If the LCD displays ... MAPNET Extra Device Trouble

- O Check Trouble Log for Device Number
- O Add Device to Program if needed

If the LCD displays ... MAPNET No Answer Trouble

- O Determine Device Address and Location
- O Check Address is set properly
- Check for MAPNET Communication (36VDC)
- O Check for DC Voltage if applicable (24DC)

If the LCD displays ... MAPNET Bad Answer Trouble

- O Check Shield for Open or Ground
- O Are any Devices sending No Answer Trouble ?

If the LCD displays ... MAPNET Communication Failed

- O Check for 36VDC out of MAPNET Power Supply.
- O Check for short across the MAPNET Lines (Additional Trouble Message).

If the LCD displays ... MAPNET Power Supply Status

O Check for Power Harness P4.

If the LCD displays ... MAPNET Open Circuit Fault

- O Check Mapnet communications loop for Open circuit
- O Locate and repair wiring break
- O <u>Press the "System Reset" key</u> on the front panel to clear the fault message

If the LCD displays ... MAPNET Short Circuit Fault

O Check Mapnet communications loop for Short circuit condition Check that Mapnet wiring to devices has not been reversed

O Locate and repair wiring fault

6. RUI TROUBLES

If the LCD displays ... RUI Open Circuit Fault

- O Check RUI communications loop for Open circuit
- O Locate and repair wiring break
- O Press the "System Reset" key on the front panel to clear the fault message

APPENDIX C

GLOSSARY OF 4100 FIRE ALARM SYSTEM TERMS

Alarm Verification Option:

A field-programmed option that causes the CPU to verify (double-check) all alarm initiations originated by smoke detectors before sounding the signals.

Annunciator:

A remotely-located, electrically-powered display, separate from the control panel, containing lamps to indicate the status of the fire alarm system.

Auxiliary (AUX) Relays:

Control relays that energise only during alarm conditions, and that are used to either apply power to or remove power from other equipment during an alarm condition.

Class A Circuit:

An initiating device or indicating appliance circuit within which all components remain fully functional even though a single pen or ground exists in the circuit.

Class B Circuit:

An initiating device or indicating appliance circuit within which some or all components may be disabled when a single open or ground exists in the circuit.

CPU (Central Processing Unit):

That portion of the fire alarm panel which processes alarm and fault information received from throughout the system, and acts on that information in an appropriate manner.

Master Controller Board:

A panel-mounted module consisting of the CPU itself, eight zone (circuit) monitors, two signal (circuit) monitors and two AUX relays.

End-of-Line (E.O.L.) Resistor:

A resistor installed at the electrically furthermost point in a signal or zone circuit.

Fan Control Module:

A panel-mounted module that consists of manual switches which allow fan or damper control circuits to be turned on, turned off, or operated automatically.

Fire Alarm Control Module:

The portion of the fire alarm system which provides the power and contains the circuitry needed for system operation.

Indicating Appliance (Signal) Circuit:

A circuit consisting of one or more indicating appliances.

Indicating Appliance (Signaling Device):

A device which produces an audible and/or visual signal in response to a fire condition - horn, bell, chime, flashing light, etc.

ID - Initiating Device:

A manual or automatic device which, when activated, initiates an alarm - pull station, heat or smoke detector, water flow switch, etc.

Initiating Device (Zone) Circuit:

A circuit consisting of one or more initiating devices.

Local Energy Master Box:

A municipal fire department connection box, mounted externally to the panel, that uses electrical energy from the fire alarm panel to energise its (the master box's) electromagnetic tripping mechanism.

Power Supply Module:

That portion of the fire alarm panel which provides the power needed to operate all panel modules, as well as that needed to operate all electrically-powered initiating devices and all indicating appliances.

Signal Module:

A panel-mounted module which supervises two indicating appliance (signal) circuits.

Silence Inhibit Option:

A field-programmed option which, when entered, prevents all alarm indicating appliances from being silenced, and the system from being reset, until the delay's duration expires.

Supervision:

The continuous electrical checking of fire alarm circuits and components for faults (opens and, in some cases, shorts). For example, 4100 signal circuits are supervised for both opens and shorts, while 4100 zone circuits are supervised for opens only (a zone circuit short causes an alarm condition).

Zone Module:

A panel-mounted module containing the circuitry needed to supervise either four or eight zone circuits for both fault conditions and to monitor the circuits for alarm conditions.