4100/4120

Fire Alarm System
Installation Manual

LT0294
579-315
Rev 1.1

Manufacturer's Details

Approvals

Manufactured by

Copyrights and Trademark Information

Australian Standard AS 4428.1, Control and Indicating Equipment. SSL Listing No. afp1165

Simplex International Pty Ltd 140 Old Pittwater Road
Brookvale N.S.W. 2100 Australia
Phone: (02)-9466-2333

Copyright © Simplex Time Recorder Co., 2000. All rights reserved.
Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written consent of Simplex Time Recorder Company.
Simplex and the Simplex logo are registered trademarks of Simplex Time Recorder Co.

Product Name and Model No

NAME:	$4100 / 4120$ FIP
SERIAL NUMBER:	
MANUFACTURE DATE:	

Cautions and Warnings

READ AND SAVE THESE INSTRUCTIONS. Follow the instructions in this installation manual. These instructions must be followed to avoid damage to this product and associated equipment. Product operation and reliability depends upon proper installation.

DO NOT INSTALL ANY SIMPLEX PRODUCT THAT APPEARS DAMAGED. Upon unpacking your Simplex product, inspect the contents of the carton for shipping damage. If damage is apparent, immediately file a claim with the carrier and notify Simplex.

ELECTRICAL HAZARD - Disconnect electrical field power when making any internal adjustments or repairs. Servicing should be performed by qualified Simplex Representatives.

STATIC HAZARD - Static electricity can damage components. Therefore, handle as follows:

- Ground yourself before opening or installing components (use the 553-484 Static Control Kit).
- Prior to installation, keep components wrapped in anti-static material at all times.

EYE SAFETY HAZARD - Under certain fiber optic application conditions, the optical output of this device may exceed eye safety limits. Do not use magnification (such as a microscope or other focusing equipment) when viewing the output of this device.

Table of Contents

Approvals vi
Manufactured by vi
Copyrights and Trademark Information vi
How to Use this Publication vii
ntroduction vii
General Conventions vii
Chapter 1 Contractor Installation Instructions 1-1
ntroduction 1-1
n this chapter. 1-1
Supplied Documentation 1-2
nstallation Overview 1-3
Chapter 2 Programmer's Report Explained. 2-1
ntroduction 2-1
n this Chapter 2-1
General Information 2-2
Card Summary by Location 2-3
System Point Summary 2-4
ntroduction 2-4
Zone Name 2-4
Address 2-4
Custom Label 2-4
Point Type 2-4
Virtual Zone Summary 2-8
Virtual Zone Detail 2-9
2120/RS232 Interface Report 2-11
Chapter 3 Final Installation, Power Up and Testing of the System 3-1
ntroduction 3-1
n this Chapter 3-1
nstallation Checklist for Simplex Technical Representative 3-2
Visual Inspection 3-3
nstall Printed Circuit Boards. 3-4
CPU/Main Power Supply Boards with Components 3-9
ntroduction 3-9
Power Up Procedure 3-9
System Test Procedures 3-10
ntroduction 3-10
3attery Test 3-10
Alarm Test. 3-10
Fault Test 3-10
-amp Test 3-11
Remounting Retainer 3-11
APPENDIX A 1
Troubleshooting Procedures 1
ntroduction 1
Troubleshooting Chart 1
Troubleshooting Procedures, Continued 2
APPENDIX B 4100 Specifications 1
General 1
Expansion Modules 1
NDICATORS and DISPLAY 3
KEYPAD CONTROLS 3
SOFTWARE FEATURES 3
APPENDIX C 4100 Fault Messages 1
Card Troubles 1
Battery Troubles 2
Earth Grounds 2
Annunciator Troubles 3
Vapnet Troubles 3
RUI Troubles 4
Appendix D 1
Glossary of 4100 Fire Alarm System Terms 1
Appendix E 1
Battery Capacity Calculation Methology 1
Appendix F 1
Cable Characteristics 1

How to Use this Publication

Introduction

General Conventions

Before you start using the 4100/4120 Fire Alarm System Installation Manual, it's important to understand the typographic conventions used in this publication.

The following conventions are used in this publication to identify special names or text.

Convention	Meaning				
Bold type	Indicates words or characters that you type. Unless it is specifically noted, you can type the text in lowercase or uppercase characters. For example, cd access means that you type the lowercase letters "cd" followed by a space and the lowercase word "access."				
Italic type	Indicates information that the user must supply, such as filenames. For example, cd directory_name means that you type the letters "cd" followed by a space and a directory name.				
Indicates important terms or titles of publications.		$	$	"Text in quotes"	Indicates the title of a chapter or section of the manual, such as "How to Use This Publication."
:---:	:---				
Bulleted lists	Provides you with information. They are also used to indicate alternatives in numbered procedural steps.				
1. Numbered lists	Indicates procedures that you must carry out sequentially.				

Related Documentation

Information Covered in Other Manuals

The following table shows the recommended reading path for information related to the 4100/4120 Fire Alarm System. The document in boldface, italic type represents this manual.

Document Name	Part \#
$4100 / 4120$ Fire Indicator Panel Operator Manual	$574-314$
$\mathbf{4 1 0 0 / 4 1 2 0}$ Fire Alarm System Installation Manual	$\mathbf{5 7 9 - 3 1 5}$
$4100 / 4120$ Fire Indicator Panel Technical Manual	$579-316$

Chapter 1 Contractor Installation Instructions

Introduction

In this chapter

This chapter provides a logical sequence of procedures to follow when installing a 4100+ system. Refer to the notes below before moving on with the installation procedure. Also, see the next section for a list of documents referred to during the installation.

Important: The installer is responsible for safeguarding all 4100+ material shipped to the job site. During system installation, store all 4100+ items (including all documentation) in a clean, dry, safe place until needed.

Important: If an existing system must be shut down while the 4100+ system is being installed, notify the appropriate personnel (building occupants, fire department, monitoring facility, etc.).

Warning: After reading the information contained in this manual, call your local Simplex Representative before proceeding to connect field wiring. Do not apply AC or battery power to the 4100+ system unless in the presence of a Simplex Technical Representative.

Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#	
Supplied Documentation	$1-2$	
Installation Overview	$1-3$	

Supplied Documentation

The envelope that contained this publication also contains the following documents:

- Factory Documentation (packed in a clear plastic envelope)
- 4100 Field Wiring Diagram (841-731)
- Field Wiring Diagrams, Smoke Detectors (841-687)
- Field Wiring Diagrams, MAPNET II ${ }^{\circledR}$ Devices (841-804)
- 4100/4100+ Fire Alarm Operating Instructions (579-314)

Except for the last publication, all of the above documents are required for system installation.
The 4100 Field Wiring Diagrams (841-731) are used when wiring peripheral devices to the 4100 panel. These diagrams provide a pictorial reference on how to terminate wiring on all motherboards in a 4100 system.

Field Wiring Diagrams (841-687) should be available for the installer during installation of all peripheral devices (auxiliary relays, indicating appliances, initiating devices, etc.).

Note: The first page of each Field Wiring Diagram is an index, which should be used to identify the correct page for a specific installation procedure.

The next ten steps outline the installation process for the 4100 Fire Alarm System. Each step in the procedure is followed by an explanation of exactly what needs to be done and how. If possible, proceed through the installation process in the sequence that follows.

1. Inventory the delivered equipment.

The delivered equipment includes the envelope that contained this publication, the materials listed in the Packaging Information section of the Factory Documentation, and the envelope labeled System Hardware (shown in Figure 1-1.

Note: The contractor is not responsible for inventorying or installing daughter cards, or for interconnecting panel components. All cartons that contain daughter cards are to be opened, inventoried, and installed by Simplex personnel.

GSimplex
 SIMPLEX TIME RECORDER CO. GARDNER, MA 01441 U.S.A.

570210-A

Figure 1-1. System Hardware Envelope Label
2. Install the back box. Refer to the 4100+/4120/UT Back Box Installation Instructions (Pub. No. FA4-21-203).
3. Install and tag all system wiring. Refer to the SYSTEM POINT SUMMARY Report for the points that must be wired (igure 2-3 shows an example) and the appropriate page in the 4100 Field Wiring Diagram (841-731) for instructions on wiring that type of point.
4. Install the peripheral devices and E.O.L. resistors. Refer to the Point Type column in the System Point Summary Report for device type.

- Wire peripherals in accordance with the appropriate 4100 Field Wiring Diagram (841-731).
- Wire a MAPNET II $^{\circledR}$ device in accordance with the appropriate MAPNET II ${ }^{\circledR}$ Field Wiring Diagram (841-804).
a. Use a small screwdriver or ballpoint pen to set the MAPNET II device's address switches. Refer to the note below for instructions on setting proper addresses.

Notes: A MAPNET $\|^{\circledR}$ device's address is represented by the final digit(s) in the zone's name. See Table 1-1 for a complete listing of MAPNET II ${ }^{\circledR}$ addresses.

(address examples)

A device that connects to a zone named M1-2 must have its switches set to address 2. A device that connects to a zone named M1-117 must have its switches set to address 117.

- Address zero (all switches turned OFF) is not a valid address.
- Switch number 8 is never turned ON.
b. After setting the device address, write the device's address on the address label to agree with the address switches.

Figure 1-2 and Figure 1-3. Location of DIP Switches on a Typical Device and Device Address Label

Table 1－1．MAPNET II Addresses

${ }_{\sim}^{\infty}$	
$\frac{\pi}{3}$	
品	
$\frac{\pi}{3}$	
$\frac{T}{3}$	
$\frac{?}{3}$	
答	
$\frac{7}{3}$	
\％	
\％	
\％	
$\stackrel{4}{3}$	
${ }_{5}^{T}$	
3	
\％	
甬	

c．The envelope labeled＂748－200 System Hardware＂contains the required resistors．

3．3K（monitor zone）resistors are colour coded orange，orange，red（and have a gold tolerance band）；

10K（Notification appliance［signal］circuit）resistors are colour coded brown， black，orange（and also have a gold tolerance band）．

Note：Resistors other than those described above will be used by the Simplex Technical Representative（T．R．）during installation checkout．
5. Using the procedure below, remove the option bay door. See Figure 1-4.
a. If applicable, mark the top of the ribbon cable. Then pull the cable straight out of its connector.
b. Remove the hair-pin cotter pins (item 1) from the upper clevis pins (item 2). Then push the clevis pins inward and lower the door.
c. Free the lower end of the retainer cable (item 3) by removing the screw and washer (items 4 and 5).
d. Remove the hair-pin cotter pins (item 6) from the lower clevis pins (item 7). Then push the clevis pins inward and remove the door.
e. Store the door and its hardware in a safe, clean and dry place until the remainder of the steps are complete.

Figure 1-4. Removing the Option Bay Door
6. Check and terminate all zone (ZN), MAPNET Loops (MAP A, MAP B) and signal (SIG) wiring.

Note: A standard job has at least 3 signal circuits, one of which is wired in the factory (Signal 3). The other two circuits must be wired. The three standard job signal circuits are described in the table below. Refer to the Programmer's Report for the actual configuration of your system.

Table 1-2. Standard Job Signal Circuits*

Signal	Custom Label	Card Location
Signal 3	Sounder (Local/Remote)	Address Label 2
Signal 4	External Bell	Address Label 2
Signal 5	Warning System	Address Label 2

* This table represents standard job signal circuits only, refer to the Card Summary by Location Report for all of the signal circuits on your job.
A. Refer to the Card Summary by Location Report Figure 2-2 to determine the location of each card on the motherboard (A stock-on "ADDRESS" label on each motherboard identifies that board's number). The Card Summary by Location Report is found within the computer printout portion of the Factory Documentation.
B. Use the terminal identifier paper labels on the terminal blocks to find specific terminals. See figure 3-1 (Custom Terminal Wiring Identifiers) for typical custom terminal wiring paper label identifiers.
C. Check each circuit for voltages, shorts or opens as follows:

1. With the meter set on $\mathbf{3 0 0 V} \mathbf{A C}$, read the voltage across the circuit.

- Meter must read 0 volts.

2. With the meter set on $\mathbf{6 0 V D C}$, read the voltage across the circuit again (this time in both directions).

- Meter must read 0 volts.

3. With the meter set on OHMS $\mathbf{x} 10$ and its $(+)$ and $(-)$ leads connected to the circuit's $(+)$ and (-) wires respectively, check resistance.

- Readings must compare favourably with those shown in Table 1-3.
- If reading indicates an open in a circuit that includes a smoke detector, make sure the detector head(s) are properly mounted and seated. (Circuits always read "open" (infinity) if detector power is absent and separately-powered devices (four-wire smoke detectors) are involved.)
D. Connect the wires to their terminals.

Table 1-3. Acceptable Zone and Signal Circuit Meter Readings

Circuit Type

Meter Reading
Style B (formerly Class B) Initiating Device (Zone) Circuit
From zone + to zone - (each zone)
3.3K ohms

From zone + to ground Infinity
From zone - to ground Infinity
Style D (formerly Class A) Initiating Device (Zone) Circuit
From zone + to zone - (each zone) Infinity
From zone + to ground Infinity
From zone - to ground Infinity
From zone + OUT to + IN Less than 50 ohms
From zone - OUT to - IN Less than 50 ohms
Style Y (formerly Class B) Notification Appliance Circuit (each signal circuit)
From + to ground Infinity
From - to ground Infinity
Resistance across circuit In one direction 10 K ohms In opposite direction Less than 200 ohms

Style Z (formerly Class A) Notification Appliance Circuit (each signal circuit)

From + to ground
From - to ground
Infinity
From + OUT to + IN
Less than 50 ohms
From - OUT to - IN Less than 50 ohms
Resistance across circuit
In one direction
In opposite direction
Infinity
Less than 200 ohms
Shielding
Shield to ground Infinity
Shield to - Infinity
Shield to $+\quad$ Infinity
MAPNET II ${ }^{\circledR}$ Loops (ZAMs and IAMs)
From MAPNET $I^{\circledR}+$ to ground Infinity
From MAPNET II ${ }^{\circledR}$ - to ground Infinity
7. Check and terminate all remaining circuits (Auxiliary Relays, Brigade, AC Power, MAPNET II, etc) according to the instructions below.

Auxiliary Relays

A standard job has at least two Auxiliary Relays that must be wired. The table below describes these two relays. Refer to the Programmer's Report for the actual configuration of your system.

Table 1-4. Standard Job Auxiliary Relays*

Auxiliary	Custom Label	Card Location
Auxiliary 3	Isolate Relay	Address Label 3
Auxiliary 4	Fail Relay	Address Label 3

* This table represents standard job auxiliaries only, refer to the Card Summary by Location Report for all of the auxiliary circuits for your job.

Note: The Fail Relay (Aux 4) is always held on, in a failsafe mode, by the software.

Marked on the termination label for auxiliaries are the connections N.O (Normally Open), N.C. (Normally Closed) and C (Common). These connections are in the de-energised state.

Brigade Circuits

A standard job has two Brigade Circuits that must be wired. The table below describes these two circuits. Refer to the Programmer's Report for the actual configuration of your system.

Table 1-5. Standard Job Brigade Circuits

Brigade	Custom Label	Card Location
Brigade Alarm	none	CPU Board
Brigade Fault	none	CPU Board

As the table points out, the Brigade circuits are now located on the CPU Board. The terminal block identifier label for the Brigade circuits is shown in Figure 3-1.

AC Power

Connect the AC Power after all other circuits are terminated. The AC Power terminal block, like other TBs, is labeled for correct wiring.

Warning: The main breaker for AC Power to the Fire Panel should be turned off when wiring AC Power.

Important: Only Simplex representatives are authorised to apply AC or battery power to the 4100+ system.
8. Use the tie wraps in the System Hardware envelope to neatly dress the panel wiring.
9. Re-install the option bay door.
10. Call your local Simplex Branch Office (listed in the Yellow Pages) to install the printed circuit boards and test the system.

Chapter 2
 Programmer's Report Explained

Introduction

In this Chapter

The Programmer's Report identifies peripheral connections within the panel and specifies system operational data. The sections within the Programmer's Report normally required for contractor installation are explained in this chapter.

Refer to the page number listed in this table for information on a specific section in the Programmer's Report.

Topic	See Page \#
General Information	$2-2$
Card Summary by Location	$2-3$
System Point Summary	$[2-4$
Virtual Zone Summary	$2-8$
Virtual Zone Detail	$2-9$
2120/RS232 Interface Report	$2-11$

General Information

This section contains branch office required information. It details branch personnel involved with the system, system power data, agency, and software information. The title at the beginning of the report should match the panel being installed. Also, note the build date. It should be up-to date. If the report doesn't seem to match the current site, contact the local Simplex TR.

```
XYZ HOSPITAL, BLDG 1 GENERAL INFORMATION Page
1
00C0901 node:1 rev:10
O
--
4100 Fire Alarm System
GENERAL
Simplex Time Recorder Co.
INFO
Node Number: 1
System Type: 4100+
    Job Filename : 00C0901
                                    Job Title : XYZ HOSPITAL, BLDG 1
        Order Number :
                    Customer : ACME FIRE ALARMS
        Customer Contact : JOE FLAME
            Contractor :
            Salesperson :
        Branch Number : 909
        Branch Location : PERTH
            Programmed by : DJR
        Agency Approval : NONE
            NFPA Standard : NONE
        Standby Generator? : NO
Hours of Standby Battery :
Comments : SAMPLE 4100A JOB FOR USE IN THE INSTALLATION MANUAL
                        Job Rev : 10
            Built Rev : 10
            Built Date : 08-Jan-01 11:22
                                    Current As Built
                                    _------ --------
            Programmer Rev : A9.02.13 A9.02.13
        System Defaults Rev : 100 100
    Database (DBF) Format : 160 160
            CFIG Format : 96 96
```

Figure 2-1. General Information

Card Summary by Location

The Card Summary by Location shows the number of cards within the system, as well as the I/Os on those cards. Mainly, use this section of the report to locate specific cards, whether they are in the local controller unit or in a remote unit, and to identify the specific I/Os mapped to those cards. The report shows a Card Number that corresponds to the address of each printed circuit board and a Zone Range that identifies the I/Os on each card. You can also use this section of the report to verify delivery of system cards from the factory.
--
XYZ HOSPITAL, BLDG 1 CARD SUMMARY BY LOCATION Page 3

00 C 0901 node:1 rev:10 11:23:35, MON, 08-JAN-
01
\qquad
--

CARD
CARD LOCATION LISTING:
LOCATION

LOCAL CONTROLLER UNIT:

DAUGHTER CARDS:

Card	Card Type	Zone Range
0	(7003) 4100+ Master Controller	
1	(6005) Power Supply/Charger	
2	(4322) 3 Input Class B Signal w/Sup	SIG3-8
3	(3003) 8 Pt, 3 Amp Relay w/ Feedback	AUX3-10
4	(0140) 4120 Network Interface	
5	(0113) 2120/RS232 Interface	RS232-1
6	(0110) MAPNET Interface	M1-1-9
7	(0304) Remote Unit Interface (RUI)	RUI 1

ANNUNCIATORS:

REMOTE UNIT INTERFACE 1 (RUI 1):

Figure 2-2. Card Summary by Location

System Point Summary

Introduction

Zone Name

Address

Custom Label

The System Point Summary is of primary importance to the installer. Simplex personnel must provide this information prior to installation. Call your local Simplex branch office, listed in the Yellow Pages, and request this information be provided. This is used in conjunction with the Layout pages, to determine wiring terminations and the information shown below.

Note: The System Point Summary Report can be found within the computer printout portion of the Factory Documentation.

Zone names reference the custom label to specific points for actual customer wiring. They include monitor zones (ZNx), signals (SIGx), auxiliary relays (AUXx), 24 point I/O (IOx) and feedback (FBx) numbers. Zones, signals, relays, feedbacks, etc., are shown in numerical sequence.

Note: Zones with a device type of "LIST" are virtual zones and do not represent actual points.

Note: The last four signals circuits (in Figure 2-3, SIG 15-19) in a job are not used in Australia. You can ignore these.

Each printed circuit board requires a unique address. Address 0 identifies the master termination module. Up to 119 addresses, one per printed circuit board, may be used in a system. Addresses may or may not be in sequential order, but the report always starts with address 0 . Two address labels are used for each mother/daughter board combination. The mother board will have its unique address label next to the P.C. board connector. The daughter board will have an identical label.

The custom label identifies a location within a building or area and contains additional information concerning each circuit. Also included with the custom label is the corresponding zone name. This ties the custom label to a zone name and allows the installer to identify where field wires are terminated, according to zone name.
(examples)

| 6TH FLOOR NORTH WING EXHAUST FANS | FB25 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1ST FLOOR SOUTH WING VISUALS | | SIGNAL 2 |
| 3RD FLOOR EAST WING STROBES | SIGNAL 40 | |

Point Type

This is the type of device (indicating appliance, initiating device, relays, etc.) connected to each circuit. Each device type is abbreviated. An operational description may also be included in the abbreviation.
(example)

AHUM (Air Handling Unit Monitor)
(PrimaryElevator PRI Capture)

The installer should use the System Point Summary when marking wires to the 4100 panel. These markings should include zones ($\mathrm{ZNx}+, \mathrm{ZNx}$-), signals (SIGx), etc., for each circuit within the system. Marking each wire in this matter will facilitate termination and checking of the wiring in the 4100 panel.

System Point Summary, Continued

Figure 2-3. System Point Summary Report

Figure 2-4. System Point Summary Report (continued)

System Point Summary, Continued

Notes:

- Custom label information tells you where the circuit goes.
- At both ends of each circuit, tag wires with zone name and polarity (in cases where polarity applies). For example, SIG 3+ and SIG 3-.
- T-tapping is permitted only for Style 4 (formerly Class B) MAPNET II ${ }^{\circledR}$ circuits.
- All MAPNET $\|^{\circledR}$ circuits have zone names that begin with " M ".

Virtual Zone Summary

A virtual zone contains a number of addressable, MAPNET devices grouped together and acting like a hardwired zone. The Virtual Zone Summary shows the name of each zone on the system and the number of points on each virtual zone.
XYZ HOSPITAL, BLDG 1
XYZ HOSPITAL, BLDG 1
43
43
00C0901 node:1 rev:10
00C0901 node:1 rev:10
0 1
0 1
--
--
CARD No: 170 VIRTUAL
CARD No: 170 VIRTUAL
ZONE
ZONE

ZN6
ZN6

\left.| Point | Point | | | |
| :--- | :--- | :--- | :--- | :---: |
| Number | Name | Type | Custon Label | |$\right]$ Points

Figure 2-5. Virtual Zone Summary

Virtual Zone Detail

A virtual zone contains a number of addressable, MAPNET devices grouped together and acting like a hardwired zone. The Virtual Zone Detail Report shows the specific points within each virtual zone.

$\begin{aligned} & \text { XYZ HO } \\ & 00 \mathrm{CO} 90 \end{aligned}$	L, BLDG 1 $: 1$ rev: 10	11:23:35, MON,	
CARD No: 170 256 Virtual Zone Card Point No: 0			
Zone Description: ZN1: LEVEL 1 SOUTH Point Type: FIRE			
Point	Custom Point Label	Device Type	Point Type
M1-1	LEVEL 1 SOUTH DIRECTOR OF NURSING	ZN1 SPHOTO	SMOKE
M1-2	LEVEL 1 SOUTH STAFF RM	ZN1 SPHOTO	SMOKE
M1-3	LEVEL 1 SOUTH LAUNDRY	ZN1 OHEAT	HEAT
M1-4	LEVEL 1 SOUTH BEDSIT 12 BATHROOM	ZN1 OHEAT	HEAT
M1-5	LEVEL 1 SOUTH BEDSIT 12	ZN1 SPHOTO	SMOKE

XYZ HOSPITAL, BLDG 1		
00 C 0901 node: 1 rev:10	VIRTUAL ZONE DETAIL	Page 45
$11: 23: 35, ~ M O N, ~ 08-J A N-01 ~$		

```
56 Virtual Zone Card
```

Point No: 1 ZN2
Zone Description: ZN2: LEVEL 1 NORTH
Point Type: FIRE

			Device		Point
Point	Custom Point Label		Type	Type	

			Device	Point
Point	Custom Point Label	Type	Type	

Figure 2-6. Virtual Zone Detail

Virtual Zone Detail, Continued

XYZ HOSPITAL, BLDG 1				
$00 C 0901$ node: 1 rev:10	VIRTUAL ZONE DETAIL	$11: 23: 35, ~ M O N, ~$	\quad	Page 48
:---				
$08-J A N-01$				

CARD No: 170	VIRTUAL ZONE
256 Virtual Zone Card	
Point No: 4	ZN5

Zone Description: ZN5: LEVEL 3 SOUTH continued

Roint

Point	Custom Point Label	Device Point Type Type
2:M1-1	LEVEL 3 SOUTH BEDSIT 13 BATHROOM	HEAT
2:M1-2	LEVEL 3 SOUTH BEDSIT 13	SMOKE
2:M1-3	LEVEL 3 SOUTH MALE TOILET	HEAT
2:M1-4	LEVEL 3 SOUTH FEMALE TOILET	HEAT

\(\left.$$
\begin{array}{lll} & & \text { Custom Point Label }\end{array}
$$ $$
\begin{array}{l}\text { Device } \\
\text { Point }\end{array}
$$ \quad \begin{array}{l}Point

Type\end{array}\right]\)	Type

Figure 2-7. Virtual Zone Detail (continued)

2120/RS232 Interface Report

The 2120/RS232 Interface Report provides information on any of the 2120/RS232 Interface Cards installed on the system, including what specific settings exist for each port of the card.

```
--
XYZ HOSPITAL, BLDG 1 2120/RS232 INTERFACE REPORT Page
5 9
00C0901 node:1 rev:9 09:22:30, FRI, 29-DEC-
0
```



```
CARD NO: 5
INTERFACE
(0113) 2120/RS232 Interface
CARD
5
PORT TYPE BAUD PARITY DATA BITS STOP BITS
\begin{tabular}{llllll} 
A & RS232 & 1200 & EVEN & 8 & 1 \\
B & UNUSED & ---- & ---- & 0 & 0
\end{tabular}
```

Figure 2-8. 2120/RS232

Chapter 3
 Final Installation, Power Up and Testing of the System

Introduction

In this Chapter

This chapter contains information for finishing up the installation of the $4100 / 4120$ system. Final connections, inspections, and additions that may be made are discussed.

Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
Installation Checklist for Simplex Technical Representative	$3-2$
Visual Inspection	$3-3$
Install Printed Circuit Boards	$3-4$
CPU/Main Power Supply Boards with Components	$3-9$
System Test Procedures	$3-10$

Installation Checklist for Simplex Technical Representative

Step Procedure

1. Use the Packing List in the "Layout" pages to verify delivery/availability of all required system hardware. This includes the printed circuit boards.
2. Unlock, then open the panel door. Remove the retainer by removing the top and bottom screws, then squeeze and pull the two black plastic tabs located on the upper part of the retainer. Lift the retainer from the back box.
3. Visually inspect the 4100 system. Verify that all wiring is connected to the panel, to include the unified ground.
4. Use a volt/ohmmeter to check system wiring. This includes all wiring to the panel, local and remote annunciators, etc. Check the AC power input to the power supply. Repair required circuits prior to powering up the system.
5. Check jumpers, switches, capacitors and resistors on all system printed circuit boards. Match the address label on the motherboard to the address label on the daughter board, then install each daughter board.
6. Install all wiring harnesses and cables (except battery). This includes auxiliary relay and signal cables.
7. Apply power to the system.

- If the system is trouble-free, perform "System Test Procedures".
- If the system displays abnormal conditions, perform troubleshooting procedures.

A visual inspection of the panel should be performed prior to installation of printed circuit boards, as they obstruct the view of panel terminations when installed. Visually inspect for the following:
\square Neat terminations within the panel.System wiring is complete and unused circuits are terminated.
\square Terminations are tight.
\square Ribbon cables from CPU board are properly installed (both ends).
\square Battery cable is connected to the battery test facility P9 of the master power supply or P1 of an expansion power supply.

Green ground screw is connected to a unified building ground.
\square Inspect local and remote annunciators connections.
\square Verify that system is clean and free from wire clippings.
\square Switches are in the proper position (toggle switches are centre).
\square Verify that the configuration chip, and revision shown in the main menu, match the Programmer's Report then check the following:
(i) File name
(8 digits - example: 809005A)
(ii) Order number
(X digits - example: XXXXXX)
(iii) Revision number
(3 digits - example: 006)
(iv) Date
(9 digits - example: 07-JUL-88)

Install Printed Circuit Boards

There are several types of motherboards and printed circuit boards for the 4100 system. Each printed circuit board must be plugged into its proper motherboard for power and communications with the CPU.

Each 4100 printed circuit board has an 8 bit DIP switch (SW1) that is used to set its address and communication baud rate. Verify each address and baud rate prior to installation of each board. The system may contain up to 119 printed circuit cards (each has its own address). The CPU board is always address 0 . Each printed circuit board address is a binary address that corresponds with a Custom Terminal Wiring Identifier (white label) on its motherboard, daughterboard and the Programmer's Report. Match the address label on the motherboard to the address label on the daughterboard, then install each daughterboard. Table 3-1 shows a binary switch setting table which may be used to determine binary address and baud rate. Dip switch positions 2 through 8 are used for addressing, while dip switch position 1 is used for baud rates selection.

Check switch settings, jumpers and resistors on each printed circuit board prior to installation.
Use the Custom Terminal Wiring Identifiers (same address on motherboard and daughterboard), Layout pages and the Programmer's Report to determine proper address and placement for each printed circuit board. The dip switch on each board has been set to its correct binary address at the factory. This binary address corresponds with a Custom Terminal Wiring Identifier (label) on each motherboard. Match the address on the daughter card with the address label on the motherboard, then insert the card.

Install the printed circuit boards from left to right, and from top to bottom.

ZONES

24 POINT I/O'S

CLASS B SIGNAL

LED SWITCH CONTROLLER

EXTERNAL COMMUNICATIONS

CPU BRIGADE CIRCUITS

Figure 3-1. Terminal Block Labels

Install Printed Circuit Boards, Continued

Table 3-1. Printed Circuit Board Addresses

1	2	3	4	5	6	7	8
	MSB						LSB

Side View of Dip Switch

SW-1	SW1-2	SW1-3	SW1-4	SW1-5	SW1-6	SW1-7	SW1-8	
		CPU MODULE IS ALWAYS ADDRESS 0					CPU	$=$ ADDRESS 0
U	ON	ON	ON	ON	ON	ON	OFF	$=$ ADDRESS 1
S	ON	ON	ON	ON	ON	OFF	ON	$=$ ADDRESS 2
E	ON	ON	ON	ON	ON	OFF	OFF	= ADDRESS 3
D	ON	ON	ON	ON	OFF	ON	ON	$=$ ADDRESS 4
	ON	ON	ON	ON	OFF	ON	OFF	$=$ ADDRESS 5
F	ON	ON	ON	ON	OFF	OFF	ON	$=$ ADDRESS 6
O	ON	ON	ON	ON	OFF	OFF	OFF	$=$ ADDRESS 7
R	ON	ON	ON	OFF	ON	ON	ON	$=$ ADDRESS 8
	ON	ON	ON	OFF	ON	ON	OFF	= ADDRESS 9
B	ON	ON	ON	OFF	ON	OFF	ON	= ADDRESS 10
A	ON	ON	ON	OFF	ON	OFF	ON	$=$ ADDRESS 11
U	ON	ON	ON	OFF	OFF	ON	ON	= ADDRESS 12
D	ON	ON	ON	OFF	OFF	ON	OFF	= ADDRESS 13
	ON	ON	ON	OFF	OFF	OFF	ON	= ADDRESS 14
R	ON	ON	ON	OFF	OFF	OFF	OFF	= ADDRESS 15
A	ON	ON	OFF	ON	ON	ON	ON	= ADDRESS 16
T	ON	ON	OFF	ON	ON	ON	OFF	$=$ ADDRESS 17
E	ON	ON	OFF	ON	ON	OFF	ON	$=$ ADDRESS 18

CONTINUES TO A BINARY 119

ON OFF OFF OFF OF OFF OFF OFF = ADDRESS 119

Install Printed Circuit Boards, Continued

Table 3-2. All Expansion Cards

DIP SWITCH SW1									
ADDRESS AND BAUD RATE SELECT									
SWITCH POSITION	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	$\# 7$	$\# 8$	

Table 3-3. 24 Point Graphic I/O Card Pluggable Resistors

Note: Systems are shipped from the factory with 2.0 K OHM resistors. Use 2.0 K OHM resistors for contact monitors and 20 OHM resistors for RELAY or LED/lamp outputs.

CPU/Main Power Supply Boards with Components

Introduction

When power is first applied to the panel, or when the processor has been reset, the system will self-test the integrity of its memory and verify proper card installation. At the end of the selftest, the system will display "SYSTEM STARTUP IN PROGRESS" followed by at least two fault conditions (battery and time-and-date). After the battery is connected and the time and date has been entered, the system should then display the message "SYSTEM IS NORMAL" along with the time and date.

Notes:

- When a printed circuit board is not properly inserted, the system will display a fault condition.
- When a printed circuit board is inserted, but configured incorrectly or not defined in software, the system will display a fault condition, normal operation will be suspended for that card until the fault has been corrected.
- Other failures will cause a message to be displayed to the operator and may cause the system to become inoperative and the tone alert to sound continuously.
- Refer to Appendix C for a list of Fault Messages and likely causes and rectification

To power up the 4100 system, perform the following steps:

1. Ensure that the mains isolate switch is OFF and batteries are disconnected. Ensure that 240 V AC supply is connected to the panel from the mains distribution board.
2. Turn the panel mains isolate switch ON. When the green Power LED turns on (after approximately 30 seconds), connect the batteries.
3. Acknowledge all abnormal conditions by pressing the appropriate "ACK" (Alarm and Fault) pushbutton(s). Press the "ACK" pushbutton to review all abnormal conditions within each list. Once all abnormal conditions are cleared, press the "CLR" key.
4. Set the correct time and date. The system should then display "SYSTEM IS NORMAL" followed by the time and date.
5. Repair/restore all abnormal conditions. (refer to Appendix A - Troubleshooting Procedures).

System Test Procedures

Introduction

Battery Test

These procedures should be followed when the system is first installed, during periodic tests, or as required by local code. Check local codes to determine how frequently your system should be tested. Always inform appropriate personnel that you will be testing the system (city Fire Brigade, customer, etc.)

Important: On completion of the tests ensure that all switches are in the correct operating position and that the system has been returned to its normal status. Should a fault condition exist, or if a circuit indicator did not illuminate when tested, immediately contact your maintenance company to rectify the problem.

The battery test is performed to determine battery status. To test the batteries, perform the following procedures:

Note: The system automatically tests the battery once a week, on Tuesdays at 8 AM. Any tests performed with the battery test key are in addition to these weekly tests.

1. Unlock, then open the panel door and remove the retainer.
2. Read the battery labels. If either battery is more than 4 years old, replace the battery(s).
3. If the battery is less than 4 years old, press the battery test key, the system will load the battery for one hour and signal a fault if the test fails.

Carry out a fire alarm call by simulating an alarm on detector zones as follows:

1. Isolate any system outputs you wish not to respond to the testing of the system such as the exterior bell (using the EXT BELL ISOLATE button), the warning system (using the EXT BELL ISOLATE button, and any other Auxiliary Control Functions (ACF) including AC Shutdown and MDH controls using the ACF ISOLATE FUNCTION.
2. Place the fire brigade transmitter selector switch in the isolate position.
3. Select a point or zone upon which to perform the test (refer to the Point Summary Report)
4. Press the Alarm test key to activate the actuating devices that will test the system's signals.

To check the alarm bell, or any other ancillary circuit operation press the EXT BELL ISOLATE key again.

Note: Under Alarm Test, the brigade relay will operate as well as any other ancillary outputs that have been programmed to operate under alarm conditions.

Perform a fault test by first selecting a point or zone to test and then press the "FLT TEST" key.

The system will automatically create a momentary fault condition on the selected point or zone and will indicate a system fault during testing.

System Test Procedures, Continued

Lamp Test

Remounting Retainer

The lamp test pushbutton on the control panel is used to determine local lamp failures within the system. Only lamps on the 4100 control panel will illuminate along with the five function and acknowledge LEDs. All segments on the LCD will also change. Perform the following procedures to determine lamp failure:

1. Press the "LAMP TEST" pushbutton.

All LEDs should illuminate (lamps should stay illuminated as long as the pushbutton is depressed). Holding the Lamp Test pushbutton in for more than three seconds will test the piezo.
2. Perform an individual lamp test on all remote annunciators, to include the 24 point I / Os, RCUs, SCUs and LED/switch modules.
3. Remove and replace defective $\operatorname{lamp}(\mathrm{s})$.

Note: The serial annunciator lamps/LEDs will not illuminate during the lamp test.

1. Install the retainer assembly onto the back box assembly utilising the two bottom hooktabs and secure it by using two plastic squeeze release tabs located on the upper centre of the retainer assembly.
2. Install two screws to secure the retainer assembly, one at the top centre of the retainer assembly and the other at the bottom centre of the retainer assembly.

Note: The two screws must be installed to ensure proper ESD (electro-static discharge) protection.
3. Close and lock the door assembly.

APPENDIX A
 Troubleshooting Procedures

Introduction

Troubleshooting Chart

Before troubleshooting the system, notify the customer and monitoring facility that you are repairing the system and may trip an alarm. Local codes may require notification of additional personnel, therefore check local codes for these requirements.

Tools required for troubleshooting are: a multimeter, side cutting pliers, IC removal/insertion tool (optional) and two sizes of screwdriver. It is also recommended that Field Wiring Diagrams be used as appropriate.

The "Voltage Chart" shown on the following page contains voltage readings for various motherboard terminals and connectors and is to be used as required. Do not take voltage readings on the system printed circuit board's ICs.

When troubleshooting the 4100 system, check the obvious things first. These are the LEDs, toggle switches, dip switch settings, power, clipped jumpers, resistors, city jumpers and wiring to include contractor installed field wiring, all of which are located in the fire alarm panel. Perform a visual inspection of the panel.

The following indications should be observed on the fire alarm panel.
(i) Normal LED indications.
(a) Green "Power" LED is illuminated.
(b) All other LEDs are OFF.

Note: If the green power LED is not illuminated, check the AC input voltage.
(ii) Toggle switches are in the centre (normal) position.
(iii) Fuses are good and are the correct values.
(iv) Ensure dip switches are properly set.
(v) Field wiring is correct (see Field Wiring Diagrams).
(vi) Correct jumpers and resistors are clipped.
(vii) Ribbon cables are properly installed.

If the alphanumeric display shows an abnormal indication on a module, troubleshoot that circuit/printed circuit board first. Check the return field wiring to that printed circuit board to ensure proper voltage and signals are present. If these signals and voltages are incorrect, the printed circuit board is probably defective.

If the visual inspection of the panel was normal and the voltages are correct, the next step is to test the return field wires from the peripheral devices. This is the next section to troubleshoot because proper voltage terminals are accessible which allows these checks to be made quickly. Check for incorrect voltage or signals with voltmeter. If an incorrect reading is observed, you know the defective printed circuit board is the one you are testing.

If the voltage and signals are correct on the return field wiring, the next step is to localise the trouble by swapping printed circuit boards of the same type. Perform the following procedure to swap printed circuit boards:

1. Disconnect battery power.
2. Turn system power OFF (AC).
3. Remove the suspected printed circuit board from the motherboard.
4. Remove a printed circuit board of the same type from the system (when available) or from branch stock.
5. Set the "good" printed circuit board address to match the white "address label" on the motherboard (where the "bad" printed circuit card was located). If a printed circuit board is swapped from within the system, set the "bad" printed circuit board address to match the white "address label" on the motherboard (where the "good" printed circuit board was located).
6. Install both printed circuit boards ("good" and "bad").
7. Apply AC power to the system.
8. Apply DC power to the system.
9. "ACK" all abnormal conditions.

If the visual indications change, the problem is in the "bad" printed circuit board. If the symptoms do not change, check inputs and outputs from the now "good" printed circuit board.

Voltages and signals on the terminals should match the Voltage Chart shown below. Note the voltages given in the chart are with reference to the negative (-) of the 24 V power Supply. When field wiring is removed, remove and mark one wire at a time. Ensure that the wiring is properly replaced to prevent additional fault indications. Use the Voltage Chart as required.

	Positive Terminal	Negative Terminal	
MONITOR CIRCUIT	28 VDC	3 VDC	Normal Circuit
	28 VDC	6-18 VDC	Current Limited Alarm
	28 VDC	28 VDC	Short Circuit Alarm
	28 VDC	0 VDC	Open Circuit
SIGNAL CIRCUIT	7 VDC	28 VDC	Normal Circuit
	28 VDC	0 VDC	Alarm Condition
	0 VDC	28 VDC	Open Circuit
	16 VDC	28 VDC	Installed Reverse Polarity
SUPERVISED ANNUNCIATOR	28 VDC	25 VDC	Normal Circuit
	28 VDC	0 VDC Pulsing	Alarm Condition
	0 VDC	0 VDC	Lost Annunciation Common
	28 VDC	0 VDC	Open Circuit

Figure A-1. Voltage Chart

Troubleshooting Procedures, Continued

10. Verify the ground status of the system by connecting the negative (black) lead of a voltmeter to the Earth Ground and connect the positive (red) lead of the voltmeter to the positive $(+)$ terminal of the 24 V DC supply and check for the following readings:

Voltage Reading	Circuit Status
$12-14$ V DC	Normal
15-21V DC	Partial Positive Ground
$6-12$ V DC	Partial Negative Ground

APPENDIX B 4100 Specifications

Expansion Modules,

 (continued)4100-0110

4100-0304

4100-3024

4100-0301

4100-0111

4100-0157A

4100-0302

4100-4321

4100-0154

MAPNET® TRUEALARM ${ }^{\text {™ }}$ Addressable Loop Module
Up to 127 MAPNET Addressable devices or TrueAlarm Analog Sensors
Up to 10 MAPNET Loop Cards per 4100 system Supports MAPNET Short Circuit Line Isolator Modules

Remote Unit Interface Module

Provides a supervised serial communications channel to remotely located distributed Miniplex® Transponders and LCD Annunciators Up to 32 distributed Miniplex® Transponders and/or LCD Annunciators per 4100 system

24 Relay Input/Output Relay Motherboard 24 CPU controlled relays Each of the 24 relays can be individually configured as either an input or an output
SPST contacts rated for $0.5 \mathrm{amps} @ 24 \mathrm{VDC}$ or 30VAC

64/64 LED/SWITCH Controller

Interfaces up to 64 LEDs and 64 switches to the master controller for front panel annunciation

Mapnet 2 Quad Isolator Module

The Mapnet Quad isolator provides fault tolerance and electrical isolation capabilities to 4100 Mapnet lines. The fault tolerance is twofold: loop open circuit (Class A operation) and short circuit disconnection

Provides a 24 VDC, 8 Amp Power Supply with integral 4 Amp battery charger.

24 Point Graphic Input/Output Module

This card provides up to 24 inputs or outputs to be programmed and connected into the system. These 24 points can be split up into any combination of inputs or outputs to suit individual system needs.

6 Supervised Relay Module

Each card provides 6 circuits of Style Y (class B) signal circuits. All 6 circuit also have two power inputs, one for every three signal circuits.
Every signal circuit is supervised for ground faults, opens and line-to-line shorts

VESDA HLI Module
Provides a high level interface to control up to 30 VESDA LaserPlus, Laser Compact, Mini scanners or E70D units. The module occupies a Mapnet channel address and requires a VESDA Net Interface Unit to connect to the VESDA units

4100 Specifications, Continued

INDICATORS and
DISPLAY

KEYPAD CONTROLS

SOFTWARE
FEATURES

Zone Status: Display	2 line by 80 character backlight Liquid Crystal
LED Status Indicators:	Alarm, Fault and Isolate, EXT Bell (Isolate), WARN SYS (Isolate), AC Power
Audible Buzzer:	Alarm And Fault Indications, Keypress feedback

Operator Keypad:

AS4428 Firefighter Facility	Ext Bell Isolate, Warn Sys Isolate, Prev, Next, Ack, Reset Power
Service Technician	20 keys including: Alarm Test, Fault Test, Keypad,
	Fault Isolate, Battery Test and Lamp Test

- WALK TEST System Test
- 4 Operator Access Levels
- 600 Event Historical Logging
- Zone selectable Alarm Verification
- Individual Circuit Disconnect/Isolate
- Nonvolatile Flash EPROM for field editable program changes

APPENDIX C 4100 Fault Messages

Card Troubles

If the LCD displays ... Wrong Card Abnormal

- 1st Line Shows Card Expected at this Address.
- Reprogram System or Insert Proper Daughter Card.

If the LCD displays ... Extra Card Abnormal

- A Daughter Card is/was installed but not Programmed.
- Reprogram System or Remove Extra Daughter Card.
- Warm Start is Necessary to Clear this Trouble Condition. Press the CPU Reset Switch located on the Master Controller Board.

If the LCD displays ... Card Missing/Failed

- Identify Card from LCD.
- Is Communication Trouble LED illuminated on Card ?
- Check Dipswitch Setting with Programmer's Report.
- Check for 8VDC \& 24VDC at Motherboard Harness P3.
- Check for Serial Comm at Motherboard Harness P2.
- If ALL Daughter Cards Report Missing/Failed Check Serial Comm fuse on Master Controller Board (F6).
- If this Trouble only Occurs upon Alarm, Alarm Silence or System Reset it may be Caused by Unsuppressed Relays, Door Magnets, High Current Loads, etc.

Battery Troubles

Earth Grounds

If the LCD displays ... Master Battery Backup Status is Trouble

- Check connector P9 on Master Power Supply.
- Check that Batteries Terminals are Connected.
- Check Fuse(s) in the Battery Harness.
- Check for Charger Output at Battery Harness Terminals with the Batteries Disconnected.
- Measure Battery voltage with Terminals from Harness Disconnected. (>18 VDC)
- Test Batteries under load for 1 minutes. (>23 VDC)

If the LCD displays ... Master Earth Status is Trouble

- Is Ground on Positive/Negative side of Power Supply?
- If a Positive Ground ... Remove half of the Motherboards.
- Isolated to a Row ... Remove half of the Daughter cards.
- If a Negative Ground ... Check Power, MAPNET and Shields.
- Ground could be Internal to the Control Panels.

If the LCD displays ... MAPNET Ground Fault Status is Abnormal

- Determine which MAPNET Power Supply is Reporting Ground.
- Verify that JW2 is Installed and JW1 is Removed unless only 2 Wire Devices are used.
- Disconnect MAPNET Communication Lines.
- Disconnect MAPNET Power Supply Connector P4.

Annunciator

 TroublesIf the LCD displays ...

Card X, Led (Switch) Display Slot X Card Defined But Not Inserted

- Annunciator Display Card Programmed in Software but not connected via the Ribbon Cable.

If the LCD displays ...

Card X, Led (Switch) Display Slot X Card Not Defined But Inserted

- Annunciator Display Card not Programmed in Software but connected via the Ribbon Cable.
- Check ribbon cable or Verify Annunciator Programming.

If the LCD displays ... MAPNET Extra Device Trouble

- Check Trouble Log for Device Number
- Add Device to Program if needed

If the LCD displays ... MAPNET No Answer Trouble

- Determine Device Address and Location
- Check Address is set properly
- Check for MAPNET Communication (36VDC)
- Check for DC Voltage if applicable (24DC)

If the LCD displays ... MAPNET Bad Answer Trouble

- Check Shield for Open or Ground
- Are any Devices sending No Answer Trouble ?

If the LCD displays ... MAPNET Communication Failed

- Check for 36VDC out of MAPNET Power Supply.
- Check for short across the MAPNET Lines (Additional Trouble Message).

Mapnet Troubles, continued

If the LCD displays ... MAPNET Power Supply Status

- Check for Power Harness P4.

If the LCD displays ... MAPNET Open Circuit Fault

- Check Mapnet communications loop for Open circuit
- Locate and repair wiring break
- Press the "System Reset" key on the front panel to clear the fault message

If the LCD displays ... MAPNET Short Circuit Fault

- Check Mapnet communications loop for Short circuit condition
- Check that Mapnet wiring to devices has not been reversed
- Locate and repair wiring fault

If the LCD displays ... RUI Open Circuit Fault

- Check RUI communications loop for Open circuit
- Locate and repair wiring break
- Press the "System Reset" key on the front panel to clear the fault message

Appendix D
 Glossary of 4100 Fire Alarm System Terms

Alarm Verification Option:

A field-programmed option that causes the CPU to verify (double-check) all alarm initiations originated by smoke detectors before sounding the signals.

Annunciator:

A remotely-located, electrically-powered display, separate from the control panel, containing lamps to indicate the status of the fire alarm system.

Auxiliary (AUX) Relays:

Control relays that energise only during alarm conditions, and that are used to either apply power to or remove power from other equipment during an alarm condition.

Class A Circuit:

An initiating device or indicating appliance circuit within which all components remain fully functional even though a single pen or ground exists in the circuit.

Class B Circuit:

An initiating device or indicating appliance circuit within which some or all components may be disabled when a single open or ground exists in the circuit.

CPU (Central Processing Unit):

That portion of the fire alarm panel which processes alarm and fault information received from throughout the system, and acts on that information in an appropriate manner.

Master Controller Board:

A panel-mounted module consisting of the CPU itself, eight zone (circuit) monitors, two signal (circuit) monitors and two AUX relays.

End-of-Line (E.O.L.) Resistor:

A resistor installed at the electrically furthermost point in a signal or zone circuit.

Fan Control Module:

A panel-mounted module that consists of manual switches which allow fan or damper control circuits to be turned on, turned off, or operated automatically.

Fire Alarm Control Module:

The portion of the fire alarm system which provides the power and contains the circuitry needed for system operation.

Indicating Appliance (Signal) Circuit:

A circuit consisting of one or more indicating appliances.

Troubleshooting Procedures, Continued, Continued

Indicating Appliance (Signaling Device):

A device which produces an audible and/or visual signal in response to a fire condition - horn, bell, chime, flashing light, etc.

ID - Initiating Device:

A manual or automatic device which, when activated, initiates an alarm - pull station, heat or smoke detector, water flow switch, etc.

Initiating Device (Zone) Circuit:

A circuit consisting of one or more initiating devices.

Local Energy Master Box:

A municipal fire department connection box, mounted externally to the panel, that uses electrical energy from the fire alarm panel to energise its (the master box's) electromagnetic tripping mechanism.

Power Supply Module:

That portion of the fire alarm panel which provides the power needed to operate all panel modules, as well as that needed to operate all electrically-powered initiating devices and all indicating appliances.

Signal Module:

A panel-mounted module which supervises two indicating appliance (signal) circuits.

Silence Inhibit Option:

A field-programmed option which, when entered, prevents all alarm indicating appliances from being silenced, and the system from being reset, until the delay's duration expires.

Supervision:

The continuous electrical checking of fire alarm circuits and components for faults (opens and, in some cases, shorts). For example, 4100 signal circuits are supervised for both opens and shorts, while 4100 zone circuits are supervised for opens only (a zone circuit short causes an alarm condition).

Zone Module:

A panel-mounted module containing the circuitry needed to supervise either four or eight zone circuits for both fault conditions and to monitor the circuits for alarm conditions.

Appendix E Battery Capacity Calculation Methology

BATTERY CAPACITY CALCULATION EXAMPLE

I_{Q} (quiescent current) calculation

Item	Unit 1 in mA	Quantity	Total mA	
CIE (base)	200.0	1	200.0	
AZ17	20.0	6	120.0	
AC17	20.0	2	40.0	
Detector:				
Hard contact heat	0.0	60	0.0	
Ionisation smoke	0.01	50	0.5	
Photoelectric smoke	0.1	40	4.0	
IR flame	0.25	6	1.5	
UV flame	2.0	2	4.0	
Beam	180.0	4	720.0	
Ancillary loads				
\quad (normally energised):			40.0	
Aircon relays	20.0	2		
Electric locks	100.0	4		1530.0

NOTE: 1 Ampere (A) 1000 milliamperes (mA)
I_{A} (alarm current) calculation
All following alarm currents are the values in addition to any quiescent value.

Item	Unit 1 in mA	Quantity	Total mA	
		-	1530.0	
Total I_{Q}	-	-	80.0	
Sounders (bells)	100.0	1	200.0	
AZ17s	20.0	2	40.0	
Evac interface relay	20.0	1	20.0	
Fire control stn interface	300.0	2	600.0	
AC17s	500.0	2	1000.0	
Warning signs				3470.0
				3.47 A

Less loads that de-energise on alarm

Aircon relays	20.0	2	40
Electric locks	100.0	4	400.0

3.03A

Required battery capacity at end of battery life

Therefore required new battery capacity

Rounded up to nearest available battery
$=\left(I_{\mathrm{Q}} \times 24\right)+\left(I_{\mathrm{A}} \times 0.5\right)$
$=(1.53 \times 24)+(3.03 \times 0.5)$
$=36.72+1.52$
$=38.42 \mathrm{Ah}$
$=38.24 \times 1.25$
$=47.8 \mathrm{Ah}$
$=50.0 \mathrm{Ah}$

4100 Power Supply / Battery Capacity Calculations

Project: SAMPLE 4100/4120 PANEL

			Standby Current (A)		Alarm Current (A)	
Module	Description	Qty	EA	Total	EA	Total
4100-8XXX	Fire Indicator Panel Base Unit	1	0.25	0.25	0.4	0.4
4100-0110	Mapnet 2 Addressable Loop	3	0.33	0.99	0.35	1.05
4100-0111	Mapnet 2 QUAD Isolator		0.05	0	0.05	0
4100-0113	RS232 Modem Interface	0	0.13	0	0.13	0
4100-1017	10 AMP PS/CHARGER					
4100-1018	10 AMP AUX PS ONLY					
4100-1020	2 AMP AUX PS ONLY (AS1668 RTU)					
4100-0301	64/64 Led Switch Controller	0	0.02	0	0.26	0
4100-0302	24 point I/O Module	0	0.04	0	0.12	0
4100-0304	Remote Unit Interface	0	0.08	0	0.08	0
4100-3003	8XSPDT,3A,24VDC Relay module	1	0.03	0.03	0.28	0.28
4100-3024	24 I/O Relay Motherboard + (4100-0302)	0	0.08	0	0.3	0
4100-4321	6 Supervised Relays	1	0.02	0.02	0.07	0.07
4100-5004	8 AZF Monitor Zone	0	0.08	0	0.2	0
4100-0451	Panel Mounted Printer					
4100-CPU	CPU Module	0	0.15	0	0.15	0
4100-0140	RS 485 Network Interface Card - Hardwired	0	0.15	0	0.15	0
4100-0141	Modular Network Card (Requires 2 media cards)	1	0.15	0.15	0.15	0.15
4100-0142	Wired Media Card RS485	0				
4100-0143	Fibre Optic Media Card	2				
4100-8225	25W Amplifier	0	0.25	0	2	0
4100-8250	50W Amplifier	0	0.25	0	3.5	0
$4100-0302 \mathrm{~A}$	6 Amplifier Control Module	0	0.04	0	0.12	0
2190-9156	ZAM Monitor - Mapnet 2	0	0.02	0	0.09	0
2190-9162	ZAM Signal - Mapnet 2	0	0.015	0	0.065	0
2190-9164	ZAM Control - Mapnet 2	0	0.01	0	0.04	0
4098-9794	Sounder Base - TrueAlarm	0			0.015	0
4907-0012	Evac Tone Sounder - 24VDC	0			0.018	0
	VESDA LaserPlus	1	0.5	0.5	0.5	0.5
	Total Power Supply Capacity		$\mathrm{I}(\mathrm{S})=$		$\mathbf{I}(\mathrm{A})=$	1.95

Note: If Power Supply Capacity exceeds 8 Amps then select an additional Power Supply
Battery Capacity Ahr $\quad \mathrm{I}(\mathrm{S}) \mathrm{x} \quad 24+\quad 0.5 \mathrm{xI}(\mathrm{A}) \quad$ (see Note)

$$
46.56+\quad 2.975=\quad \text { 49.535 Ahr }
$$

Note: $\mathrm{I}(\mathrm{A})=$ Two zones in Alarm (including Ancillary loads)
Total Battery Capacity allowing for battery efficiency
x $1.25=$
61.9188 Ahr

Therefore Select 65Ahr

Appendix F Cable Characteristics

4100 MAPNET II

Line Characteristics

Note: In the following paragraphs the term "MAPNET channel" is used to mean those lines connected to any one Mapnet Transceiver board. Parallel runs from the same board do not constitute separate channels. The term "continuous run" refers to the loop distance from the primary output, through all devices and back to the secondary output.

Line characteristics are based on 0.58 uF and/or 35 Ohms total line resistance.
Total length of line on one MAPNET channel shall not exceed 3,000 m including all T-taps and parallel runs.
Maximum length for ONE continuous MAPNET run is 1200 m for up to 128 MAPNET devices using 1.5 mm sq cable.

When the run exceeds 850 m it is necessary to use twisted, shielded pair.

4120 NETWORK

Copper Line Characteristics

4120 Network "Wired" (formerly called RS-485) Communication wiring shall be 0.75 mm sq twisted, shielded pair (TSP), or 0.22 mm sq twisted pair (TP). Shielded Cable is recommended for new installations. When shielding is used, the shield shall be connected to Earth Ground, at the Left Port end of span only.

No T-tapping of the Network conductors is allowed. Network wiring is point-to-point, only.
Maximum line length between ports at 57,600 and 9600 bits per second is shown in the table below.

	Maximum wiring distance	
Communication Speed	0.75mm sq TSP Wire. (Maximum capacitance between conductors is 174 pf. per meter)	0.22mm sq TP Wire. (Maximum capacitance between conductors is 66 pf. per meter)
$57,600 \mathrm{bps}$	$3,000 \mathrm{~m}$	$2,300 \mathrm{~m}$
9600 bps	$5,600 \mathrm{~m}$	$4,000 \mathrm{~m}$

Table 14120 Network: Maximum Transmission Distances, "Wired" Network

Fibre Optic Cable Characteristics

All fibre cables shall be multimode, graded index. ST style connectors must be used. No physical strain shall be put on the cables. There must be no cable bends of less than a 50 mm radius.

Two methods are available for joining fibre cable. Splices provide a permanent, very low loss, fibre-to-fibre connection. Couplers provide temporary connection between two ST style connectors with a loss of 1.2 dB . Both methods are permitted on a 4120 fibre Network.

The characteristics of the 4100-0143 fibre optic media card are as follows. Mininium Launch Power into a 50/125 cable is $50 \mathrm{uW}(-13 \mathrm{dBm})$. Minimum Launch Power into a $62.5 / 125$ cable is $109.5 \mathrm{uW}(-8.6 \mathrm{dBm})$. The maximum value for the minimum input sensitivity of the receiver is $1.0 \mathrm{uW}(-30 \mathrm{dBm})$.

Maximum line lengths for $50 / 125$ and $62.5 / 125$ cable are shown in the table below.

Fibre CableFibre CableFib	Loss Per Kilometer	Power Margin	Maximum distance
$50 / 125$ Fibre	4 db	4 db	3,050 meters
$50 / 125$ Fibre	3 db	3 db	4,500 meters
$62.5 / 125$ Fibre	4 db	4 db	4,000 meters
$62.5 / 125$ Fibre	3.75 db	3 db	4,500 meters

Table 24120 Network: Maximum Distances, Optical Fibre
All the information above is based on the minimum launch power of the transmitter into the specified cable and the maximum value of the minimum input sensitivity of the receiver

