LT0312

FP1600 / OMEGA 64 INSTALLATION AND CONFIGURATION MANUAL

Site Name:
This manual should be left in the panel

- WARNINGS -

NZS4512 and the NZ Building Code contain important requirements for the installation, commissioning, and testing of fire alarm systems. You must comply with the requirements of these documents, and any other statutory or regulatory requirements, in addition to the information contained in these instructions.

The FP1600 and OMEGA 64 Fire Alarm Systems contain Static sensitive components. Always observe appropriate ESD precautions when handling any Printed Circuit Boards.

CAUTION
HOT
SURFACE

The heatsink of the Battery Charger Regulator (U11) can get very hot when under high load or charging a flat battery.

- DISCLAIMER -

This product provides a configuration facility via the Programming Menu. This facility allows the user to define in detail the operation of the system, and changes may be made which prevent the system from meeting statutory or other requirements.

The manufacturer and supplier cannot accept any responsibility as to the suitability of the functions generated by the user using the programming facility.

OPERATING INSTRUCTIONS

FP1600 / OMEGA 64 is a 16 zone self-contained conventional fire alarm system expandable in multiples of 16 zones to maximum of 96 zones. It has been designed specifically to meet NZS 4512:1997, the New Zealand Building Code (Section F7), and the NZ Fire Service requirements for connection to remote receiving stations.
Special features are: * Flexible programming facilities

* Six zone circuit types
* Keypad circuit isolation
* Automated Self-Test
* Serial Remote Displays (up to 8) * History log

Detector Compatibility - Refer to listings published elsewhere for detector compatibility.
Zone Circuits - The zone input circuits can be configured individually as one of the following types: (All circuit types use a $2 \mathrm{k} 70,1 \%$ End of Line Resistor.)

Flowswitch - Open circuit is instant alarm. Short circuit is defect.
Default configuration: Non-Brigade signalling and Non-Bell ringing.
A globally programmable delay (0/5/10/15/20/25 seconds, default 5 seconds) applies before going into alarm - the circuit must be continuously in alarm for the full period of the delay. A fixed delay of 5 seconds continuously in normal applies before going out of alarm. This circuit type is non-latching.

Thermal - Open circuit is instant alarm. Short circuit is defect.
Default configuration: Latching, Brigade signalling, and Bell Ringing.

Evacuation Control - Supervised connection to a sprinkler DBA "Bell" output. (available on Master board zone circuits 1-16 only). Short circuit is instant alarm. Open circuit is defect.
Default configuration is Non-Latching, Non-Brigade signalling, and Bell ringing.
An Evacuation circuit selected for bell ringing is unaffected by either of the Silence Alarms switches the alarm must be silenced at the source.

Combined - Allows connection of conventional 2-wire smoke detectors and clean contact devices. Open circuit is instant alarm. Short circuit is defect.
Default configuration: Latching, Brigade signalling, Bell ringing, and smoke detector AVF enabled.
Smoke - Allows connection of conventional 2-wire smoke detectors and clean contact devices. Open circuit is defect. Short circuit is an instant alarm if using programmable "MCP" facility. (N/C contacts require PA0443 Contact conversion module).
Default configuration: Latching, Brigade signalling, Bell ringing, smoke detector AVF enabled, and "MCP" option disabled.

Disabled - Shuts the circuits down to save current. Fitting an EOL resistor is optional on Disabled circuits.

Residential - Allows connection of conventional 2-wire smoke detectors and clean contact devices. Open circuit is defect. Short circuit is an instant alarm if using programmable "MCP" facility. (N/C contacts require PA0443 Contact conversion module).

Default configuration: "MCP" option disabled and smoke detectors Non-Brigade signalling, Non-Bell ringing, Non-Indicating, AVF enabled.

The default configuration for "MCP" (if enabled): Latching, Brigade signalling, and Bell ringing. A Residential circuit will latch a smoke detector activation in alarm for a per-board programmable period ($0-250 \mathrm{sec}$, default $30 \mathrm{sec}, 0=$ stay latched) before attempting to self-reset. This allows local sounders to operate for the length of the delay per detector activation.

Smoke and thermal/MCP activations can be mapped separately to ancillaries, brigade, and bells. Open circuit MCP alarm cannot be allowed on Residential circuits (i.e. combined operation) because once a smoke detector had operated, an open circuit beyond the operated detector would not be able to be detected. A contact conversion module (PA0443) is therefore required for MCPs.

7-Segment Displays - There are three 7-segment displays per board. See "Display Codes" later.
Zone Index LEDs - Single flash $=$ thermal/manual alarm. Double flash $=$ smoke alarm. The Normal LED has a power-save cadence when mains is off.

Buzzer - The buzzer generally indicates the presence of abnormal conditions when the door is closed, and the presence of defects when the system is not remotely connected.

Evacuation Switch - The Evacuation key switch allows manual activation of the alerting devices (without calling the Brigade). It may also be programmed to activate ancillary outputs.

Silence Alarms Switch - Operation of the Silence Alarms switches (external or internal) prevents the alerting devices sounding when an alarm is present. They may also be programmed to de-activate ancillary outputs. The external keyswitch generates a defect.
Note: These switches will not silence the alerting devices for an Evacuation Control circuit alarm or the ERD- input.

Services Restore Switch - The Services Restore switch is intended to allow the Brigade to restore ancillary services even when an alarm is present. The effect of this switch on the ancillary outputs is programmable.

Mains Switch - 230V Mains isolation is provided by a switch on the mains termination cover.
Brigade Interface - Fit a 2W/4W General Purpose SGD (PA0862), or a General Purpose Brigade Relay Interface (PA0861). These boards mount on stand-offs and plug into the "Brigade Signalling Interface" Connector (J20) (Master board only). If an interface is not fitted, select "Local" mode (Lo) in programming.

RZDU Interface - Up to 8 compatible Remote Zone Display devices can be connected to the Master board. Wiring is a 3 or 4-core star-spur arrangement. Refer to the Technical Manual for further details. Brigade control switches and a Brigade index may be provided at each RZDU.

Control Buttons (internal) - Four pushbuttons give access to current and latched display information, operator functions and to the programming facility (described later):
"Current Defects" shows all defects currently present.
"Latched Defects" shows all defects since last Panel Reset, including those currently present.
"System Status" shows current status conditions (including groups and switches).
"Function" gives access to the Function menu (see "Function Menu" and descriptions below). In some menus, buttons have a slow/fast automatic increment mode if pressed and held.

Panel Reset - To clear latched conditions, modes, and indications, select Panel Reset (Pr) on the Function Menu and press "Select".

Self-Test - Self-Test (St) is selectable on the Function menu. Press "Select" to commence test. Self-Test automatically performs internal RAM and EEPROM checksum tests, and also exercises all zone circuits. Order of testing (indication in brackets): (St), 1-8 Alarm (A), All Normal (n), 9-16 Alarm (A), All Normal (n), All open-circuit (0), All Normal (n), then each enabled zone individually short-circuit and back to normal (1), (2), (3) etc. to (16); (St) flashes until all RZDUs complete their test.

Self-Test failure results in a pulsing buzzer and failure code display (see "Self/Auto Test Failure Codes")
Self-Test will not run (long beep) if there is a Fire or Defect indication (latched or current), or if a brigade connected panel is not Brigade Isolated or in Brigade Test. Non-brigade calling zone circuits in offnormal conditions are omitted from the test, but do not prevent it from running.

Automatic Test - An automatic version of the Self-Test runs at the beginning of every daily charger inhibit period. This can be initiated manually by selecting "Ci" on the Function menu.

Lamp Test - To initiate a lamp test select (Lt) on the Function menu. Press any button to cancel. The door may be closed during a lamp test.

Non-Latching Test (NLT) Mode - NLT (walk test) mode (nL) is selectable through the Function menu. A double beep every thirty seconds and an "nL" displayed, indicates entry into this mode. All enabled zone circuits are temporarily set to indicating, non-latching, bell-ringing, non-brigade calling, with no delays or gating regardless of their programmed selection.

In NLT mode, when any circuit is placed into alarm, its zone indication is latched on with the most recent type of alarm, and the evacuation (Bells) output is activated for 0.5 seconds. Groups and ancillaries do not operate.

A long beep indicates NLT mode cannot be entered - this could be a Fire or Defect condition (latched or current), or if a brigade-connected panel is not Brigade Isolated or in Brigade Test. Panel Reset clears NLT mode.

History Recall - History Recall is an interrogation feature available in the Function menu.
The most recent 15 significant events per board are stored in chronological order in RAM and will be lost if power fails. There is no time/date "stamping". (See "Display Codes" for details of operation).

Zone Isolation - Individual zone isolation/de-isolation (toggle function) is available on a board-by-board basis in the Function menu. Isolated zones are indicated on the displays. Power failure will clear.

Charger Inhibit - Starts a 40 minute Charger Inhibit period (reduced voltage). Also initiates an automatic self-test (if permitted). Panel Reset will terminate period.

Bells Output - For supervision, all alerting devices must have a series diode (eg. 1N4004), and End of Line resistors must be fitted as follows: 1 Branch: $9 \mathrm{k} 11 \%$ EOL, 2 Branches: $2 \times 18 \mathrm{k} 1 \%$ EOLs, or 3 Branches: $3 \times 27 \mathrm{k} 1 \%$ EOLs. Maximum total load is 5 A (subject to battery / charger capacity limitations). Supervision can be disabled in programming.

Three links (R62-R64) can be cut out to convert to 5 Amp clean contact (supervision must be disabled).
Ancillary Relay (Ar) - The ancillary relay on each board is a 30V, 5A max (Resistive) single pole changeover relay. Ar defaults to "Common Fire or Lamp Test" but is fully programmable for other uses.

On-Board Ancillary Outputs (A20-, A21-) - Two hard-wire open collector output tabs on each board default to "Common Defect or Lamp Test" and "Common Normal or Lamp Test" respectively, but are programmable for other uses.

Additional Relay/Ancillary Outputs - Access per board to the other 19 ancillary outputs is via a 26 Way Flat Ribbon Cable (J21) and a Mimic Termination Board (PA0702). All Outputs are 30V, 200mA open collector drivers (except LAMP- also drives the internal lamp).
All ancillaries are programmable, but defaults are suitable for a hard-wired mimic. (See "Ancillary Output Defaults" for default functions and Output Designation on the Mimic Termination Board).

Defect Buzzer Cancel Input (DBC-) (Master board only) - A momentary closure to 0 V silences the local mode defect buzzer.

External Defect Input (Ext DEF-) - Pull this input to OV to generate a defect.

External Reset Input (Ext RST-) (Master board only) - Pull this input to OV to generate a Panel Reset.
Evacuation Relay Drive Input (ERD-) (Master board only) - Pull this input to OV to activate the alerting devices (non-silencable). (To comply with latest standards, use Evacuation Control Zone circuit instead). Not implemented in V4.00 software

Battery Charger - The internal battery charger is constant voltage and current-limited (13.65V, 2A nominal), temperature compensated to suit an internal 12 V sealed lead-acid battery. Multiple chargers may be operated in parallel. For standby capacity of battery and charger combinations, refer to the Technical Manual for calculation methods.

Programming Mode - To enter programming mode, press and hold all three Master board "Program" buttons (Select, Mode, and Change) for 3 short beeps and 1 long beep. Insert the "Data Program Enable" link in all boards if any changes are to be saved. Refer to "Programming Menu", "Programming Options and Codes", and the "Programming Flowchart" for options available.

Program Exit Options - If an "exit with save" is attempted with any of the "Data Program Enable" links not installed, you will get a series of beeps and the system will remain in programming mode.
Simply insert the link(s) and try saving again, or press Function to bail out without saving any changes. Programming mode times out after 4 minutes of inactivity, or by closing the door.

Programming Groups - A programming Group exists within a board only and becomes active only when all zones on that board mapped to the group are in alarm and not isolated. Groups can optionally be latching (until panel reset) and can be mapped to ancillary outputs and/or universal variables. (For residential circuit types, any activated alarm type mapped to a group is sufficient).

Universal Variables - Programming Universal Variables (U01-U16) can be driven and accessed by all boards in the system, and allow some logical OR combinations of zone and group statuses between boards. Universal Variables can be mapped to ancillary outputs.

Ancillary Override (System configuration option) - If Ancillary Override is enabled, "Door Open" is treated the same as operating the Services Restore switch.

Ancillary Output Programming - Ancillary outputs follow a logical OR of the options selected, except for overrides required by standards (eg. Evacuation overrides Silence Alarms)

Door Switch Supervision - (Master board only, not optional) When fitting a Mk3 Master board into an older cabinet, solder a $220 \mathrm{k} \Omega 1 \%$ resistor across the Services Restore switch terminals.

Earth Fault Monitoring - Detects a leakage from field wiring to earth. This facility can be disabled by cutting out link R65 on all Mk3 boards in the system.

Ordering Information - Panels and Accessories

FP0547	FP1600 Rear Service
FP0700	OMEGA 64 R/S Master (32 Zone index)
FP0640	OMEGA 64 R/S Extender (16 Zone index)
PA0977	OMEGA 64 Mk3 R/S Slave Board
FA1371	OMEGA 64 R/S 32 Zone Master Index
FA1379	OMEGA 64 R/S 16 Zone Extender Index
FP0548	FP1600 Front Service
FP0701	OMEGA 64 F/S Master (32 Zone index)
FP0641	OMEGA 64 F/S Extender (16 Zone index)
KT0215	OMEGA 64 Mk3 F/S Slave Board Set
LM0074	OMEGA 64 Master to 1st Slave Loom
KT0131	OMEGA 64 Comms Extender Kit for 2 or more Slaves
PA0702	FP1600 16 Way Mimic Termination Board
LM0046	I/O Board 26 Way Flat Ribbon Cable Loom (0.50m)
LM0049	I/O Board 26 Way Flat Ribbon Cable Loom (0.25m)
LT0196	FP1600/OMEGA 64 Technical Manual
LT0312	FP1600/OMEGA 64 Installation/Configuration Manual
RR0753	Circuit EOL Resistor (2k70 1\%)
FA1372	OMEGA 64 F/S 32 Zone Master Index
FA1380	OMEGA 64 F/S 16 Zone Extender Index
FA1209	FP1600 F/S Index \quad FA1207 FP1600 R/S Index
PA0862	GP SGD
HW0036	Door Key

OMEGA 64 Masters have only 16 zones fitted. Extenders have no zone boards fitted. Refer to LT0200 - "How to order FP1600 and OMEGA64" for more detailed information.

Display Codes

System States
\square / = Norma dF = Common Defect
$-\square$ = Slave address not $-\square$ set (Slave only) $[$ I = Charger Inhibited $\boldsymbol{P}_{\boldsymbol{\Gamma}}$ = Panel Reset -PE = Program Enable G I Brigade Isolated bL = Brigade Test on 5月 = Internal Silence

= Local Mode Defect Silenced
= (Trial) Evacuation Switch on

$\Pi \square=\begin{aligned} & \text { Non-Latching Test } \\ & \text { mode on }\end{aligned}$
rーE = RZDU (Trial) Evac Switch on
$\Gamma 5 \Gamma=\begin{aligned} & \text { RZDU Services } \\ & \text { Restore Switch on }\end{aligned}$
Er I = Evac Relay Drive $\square \sqcap=\begin{aligned} & \text { Group } n \text { activated } \\ & \text { (this board only) }\end{aligned}$
FPE = Flash Program
$\Pi \square \square=\begin{gathered}\text { Bad Firmware } \\ \text { (not running) }\end{gathered}$
$\square L \square=\begin{aligned} & \text { Operating with Old } \\ & \text { Slave or old Master }\end{aligned}$

Alarms
$F_{1}=$ Common Fire

$\Gamma \Pi \Pi=\begin{aligned} & \text { Residential Alarm } \\ & \text { on Zone nn }\end{aligned}$
bF = $\begin{gathered}\text { Batt Very Low Fire } \\ \text { (latched on power up) }\end{gathered}$

Isolates

ІПП= Zone nn Isolated

Defects

$\Gamma F=$| Charger Fail |
| :--- |
| (Timeout Battery Test) |

GL = Battery Connection Fault
ELK = Earth Fault
$F_{U}=$ Fuse Blown

LED= LED board fault $L \square=\begin{aligned} & \text { (Door) Loom } \\ & \text { Connection Fault }\end{aligned}$ $H F$ = Hardware Fault PF = Program Fail EL = EEPROM Corrupt $\boldsymbol{P}_{\boldsymbol{L}}=$ Program Corrupt

HL = Auto Test Fail (Followed
\square $=$ System States SYSTEM STATUS to view.

Display Codes

Self Test Mode Operation

$\zeta L=\underset{\text { (flashes) }}{\text { Self Test Mode running }}$

$\Pi=$| Checking all zones |
| :--- |
| are normal |

$\boldsymbol{H}=\begin{aligned} & \text { Checking zones } \\ & \text { go into Alarm }\end{aligned}$

$\Pi=$| Checking all zones |
| :--- |
| return to normal |

$\Pi=$| Checking all zones |
| :--- |
| return to normal |

$\Pi \Pi=$ Checking Zone nn
$\zeta \longleftarrow=\begin{aligned} & \text { If waiting for RDZUs } \\ & \text { or slaves to finish }\end{aligned}$
Self Test Pass returns to <base>

Self/Auto Test Failure Codes

Self Test Fail sounds buzzer (four beeps) and displays failure mode code(s) as follows
$\Pi \Pi$ П = Zone nn failed to go into alarm
ППП= Zone nn failed to go back to normal
Π Пロ $=$ Zone $n n$ failed to go open circuit
$\boldsymbol{\square \square}=$ Zone nn failed to go short circuit
$П П \square=\begin{aligned} & \text { Zone nn failed to stay normal while } \\ & \text { another zone was being tested }\end{aligned}$
Failure mode displays on board(s) that had failure(s)

History Events

Press SELECT to step backwards through history (last 15 events)
To exit history, press any other button or close door. (History Mode will time out after 8 sec)

$\square \square \square=$ Zone nn Residential
$Г П П$ Smoke Alarm
$\square \Pi$ П Zone nn Defect

$\boxed{\Pi П}=$ Zone nn Normal
$\boldsymbol{\Gamma}_{\boldsymbol{\Gamma}}=\begin{aligned} & \text { Panel Reset performed } \\ & \text { Immediately after Pr, }\end{aligned}$ all zone abnormals are logged to history

Function Menu
(S) SELECT Button
(M) MODE Button
(C) CHANGE Button

Programming Menu

Button Display Button Display

(M) MODE Button
(C) CHANGE Button
(S)

Note:
Groups are local to each board
Ancillaries are local to each board
Universal variables are shared across the system

Programming Options and Codes

Zone Programming

Group Programming

$\square \sqcap=\operatorname{Group} \mathrm{n}(\mathrm{G} 1-\mathrm{GB})$

$\square, \Pi=$| Group n is mapped from a zone |
| :--- |
| (LH decimal on $=$ yes) |

$\square \sqcap$. $\begin{aligned} & \text { Group } n \text { is mapped to an output } \\ & \text { (Centre decimal on }\end{aligned}$

Group Options

= Latching or not

$\boldsymbol{\Pi}$	$\boldsymbol{\Gamma}$	$\begin{array}{l}\mathrm{nr}=\text { Doesn't ring bells } \\ \mathrm{r}=\text { Rings bells }\end{array}$

$\boldsymbol{\Pi П}_{\boldsymbol{\Pi}}$ = Group maps to Ancillary nn (Ar, A1-A21)
$\bigsqcup \Pi, \Pi=\begin{gathered}\text { Group maps to Universal Variable (U1-U16) } \\ \text { (Centre decimal on }\end{gathered}$
(Centre decimal on = yes)

Slave Displays

Slave enters programming mode at board number program position Displayed at slave when program changes are being saved

Zone and Zone Mapping Options

[T	= Callpoint or none
\square	$\square \square$	$\begin{aligned} & =\text { Gated or not } \\ & \text { (S, Co, rE only) } \end{aligned}$
L	$\square L$	= Latching or not
$\square \square$		$\square \quad$$\mathrm{nb}=$ nothing calls brigade $\mathrm{Cb}=$ Non residential only calls brig $\mathrm{b}=$ All alarms call brigade
Π	L	$\mathrm{nr}=$ nothing rings bells $\mathrm{Cr}=$ Non residential only rings bells $r=$ All alarms ring bells
5	$\square 5$	$S=$ residential smoke alarm on Zone LED $\mathrm{nS}=$ residential smoke alarm Not on LED
L	H	= Low / High Power (FL, th, Ec only)
Hr		
ЧП.		
ИП,	$=\text { Zone }$	maps to Universal Variable (U1-U16)* decimal on =yes)

System Configuration Options

\square System Configuration Menu

Brigade connected or Local Mode (Master)
Evac Monitor enabled / disabled
Ancil Override (Global)
enabled / disabled
Flowswitch Delay (Global)
(note decimal point)
0./5./10./15./20./25. sec

Adjust Batt Low Volts
 in 0.1 V steps (Master only) $\mathrm{P} 3=12.2 \mathrm{~V}+0.3 \mathrm{~V}$ $-2=12.2 \mathrm{~V}-0.2 \mathrm{~V}$

Residential Delay (per board)
1-25 (x 10) sec
$0=$ latch

Number of RZDUs
rdO $=$ none
rd1 - rd8 are valid

Number of boards in System or board number if Slave = \square to disable (Slave)

Programming Options and Codes

Ancillary Output Programming

AПП=Ancillary nn (Ar, A1-A21)
\square = Ancillary nn is mapped from a zone
Н.ПП (LH decimal on = yes)
$\square \rightarrow=$ Ancillary nn has programmable
options selected (Centre decimal on = yes)

Ancillary Output Options

L	$=$ = Latching or not

Ancillary Output Defaults

Ancil Relay (Ar) ON for Com Fire, Lamp Test
Ancil 1 (A1) ON for Zone 1, Lamp Test (Z1-)
Ancil 2 (A2) ON for Zone 2, Lamp Test (Z2-)
Ancil 3 (A3) ON for Zone 3, Lamp Test (Z3-)
Ancil 4 (A4) ON for Zone 4, Lamp Test (Z4-)
Ancil 5 (A5) ON for Zone 5, Lamp Test (Z5-)
Ancil 6 (A6) ON for Zone 6, Lamp Test (Z6-)
Ancil 7 (A7) ON for Zone 7, Lamp Test (Z7-)
Ancil 8 (A8) ON for Zone 8, Lamp Test (Z8-)
Ancil 9 (A9) ON for Zone 9, Lamp Test (Z9-)
Ancil 10 (A10) ON for Zone 10, Lamp Test (Z10-)
Ancil 11 (A11) ON for Zone 11, Lamp Test (Z11-)
Ancil 12 (A12) ON for Zone 12, Lamp Test (Z12-)
Ancil 13 (A13) ON for Zone 13, Lamp Test (Z13-)
Ancil 14 (A14) ON for Zone 14, Lamp Test (Z14-)
Ancil 15 (A15) ON for Zone 15, Lamp Test (Z15-)
Ancil 16 (A16) ON for Zone 16, Lamp Test (Z16-)
Ancil 17 (A17) ON for Normal, Lamp Test (NORM-)
Ancil 18 (A18) ON for Com Defect, Lamp Test (DEF-)
Ancil 19 (A19) ON for Com Fire, Lamp Test (FIRE-)
Ancil 20 (A20) ON for Com Defect, Lamp Test
Ancil 21 (A21) ON for Normal, Lamp Test
$\Pi \square \square=$ Ancillary is mapped to by Universal Variable
$\Pi \sqcap, \Pi$ (Centre decimal on = yes)

(s)
$\square-A$ (M) $\square \square \begin{aligned} & \text { Press SELECT to step } \\ & \text { through Groups to map }\end{aligned}$ to Ancillaries
-(S)
$\square-\square \rightarrow \square \begin{aligned} & \text { Press SELECT to step } \\ & \text { through Groups to map } \\ & \text { to Universal Variables }\end{aligned}$ -(S)
(M) $\boldsymbol{\text { (пп }}$ Press MODE to step
(M) ปПп $\begin{aligned} & \text { Press MODE to } \\ & \text { step through } \\ & \text { Universal Variables }\end{aligned}$
$\underset{\rightarrow}{\text { (M) }} \boldsymbol{\square}$ пп $\begin{aligned} & \text { step through } \\ & \text { Universal Variables }\end{aligned}$
(C) Press CHANGE to change mapping. Centre decimal on = yes
(C) Press CHANGE to change mapping. Centre decimal on =yes

(C) toggles
(C)toggl
or toggles
Follow
Follow
Common

(M) Er

M) 5 月
(S)

(S) (S) (M)

Press MODE to step to next Ancillary

Press SELECT to step from Universal Variables
A-U (M) Ann

M) $\square_{\square \Pi} \begin{aligned} & \text { Press MODE to } \\ & \text { step through }\end{aligned}$ steps through
Universal Var

(C) steps (C) steps
$P 5 \rightarrow P \square$

Press CHANGE to change mapping.
Centre decimal on = yes(M) Press MODE to step to
next Universal Variable
© steps
FD. F OS. F ID. Battery
Voltage Adj
Val(C) steps
(C) steps
(C) steps - DI $r d 0$ (1) Residential (M) Number of (M) -1) Number of (M)
(M) 4 Fowswitch Delay \downarrow
(M) F25. FD. F IS. $\rightarrow-7$

\square
\square
(S) = SELECT pushbutton
(M) = MODE pushbutton

Save values
(C) = CHANGE pushbutton

FP1600 / OMEGA 64 Zone Wiring

Thermal / Combined Circuit Wiring

RZDU Wiring

Record Your System's Configuration

Master Board
Brigade Connection: Brigade Connected / Local Only
Evacuation Supervision: enable / disable
Ancillary Override (Global): enable / disable
Flowswitch Delay (Global): 0. / 5. / 10. / 15. / 20. / 25. secs (default 5.)
Battery Low Voltage Adjust (Master only): 12.2V ___ (P or -) (default = P0)
Residential Delay: \quad seconds $(0=$ latch $)($ default $=r 03,10 \mathrm{sec}$ increments)
Number of RZDUs: (default rd0 = none)
Number of Boards in System: \quad (default $=1$)

> 2nd Board (=2) \quad (Board Number $=0$ to disable)
> Evacuation Supervision: enable $/$ disable
> Residential Delay: \quad seconds $(0=$ latch $)($ default $=r 03,10$ sec increments $)$

3rd Board (=3) (Board Number $=0$ to disable)
Evacuation Supervision: enable / disable
Residential Delay: \quad seconds $(0=$ latch $)($ default $=r 03,10$ sec increments)

> 4th Board (=4) \quad (Board Number $=0$ to disable)
> Evacuation Supervision: enable $/$ disable
> Residential Delay: \quad seconds $(0=$ latch $)$ (default $=r 03,10$ sec increments $)$

> 5th Board (=5) \quad (Board Number $=0$ to disable)
> Evacuation Supervision: enable $/$ disable
> Residential Delay: \quad seconds $(0=$ latch $)$ (default $=r 03,10$ sec increments)

6th Board (=6) (Board Number $=0$ to disable)

Evacuation Supervision: enable / disable
Residential Delay: \quad seconds $(0=$ latch $)($ default $=$ r03, 10 sec increments $)$

MASTER BOARD CONFIGURATION

MASTER BOARD CONFIGURATION

2nd BOARD（＝こ）CONFIGURATION

路这									，
17 18 18			－	－					
19 19 20									
$\begin{array}{r}20 \\ \hline 22 \\ \hline 2 \\ \hline\end{array}$									
22 23 2			，	－					
24 25 25				－					
$\begin{array}{r}26 \\ \hline 26 \\ \hline 27\end{array}$									
28 28									
20 30									
$\begin{array}{r}31 \\ 32 \\ \hline\end{array}$			\triangle	$\underline{1}$					

						7
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						

2nd BOARD (=こ) CONFIGURATION

3rd BOARD (=ヨ) CONFIGURATION

3rd BOARD ($=$) CONFIGURATION

4th BOARD ($=4$) CONFIGURATION

4th BOARD ($=4$) CONFIGURATION

5th BOARD ($=5$) CONFIGURATION

5th BOARD ($=5$) CONFIGURATION

6th BOARD ($=6$) CONFIGURATION

6th BOARD ($=6$) CONFIGURATION

UNIVERSAL VARIABLES CONFIGURATION

In the table below list the configuration, function, and any special features of the Universal Variables set up on the System. To see all mappings to a Universal Variable, refer to the Board Configuration Sheets (Pages 16-27).

FUNCTIONAL DESCRIPTION OF UNIVERSAL VARIABLES

U1	
U2	
U3	
U4	
U5	
U6	
U7	
U8	
U9	
U10	
U11	
U12	
U13	
U14	
U15	
U16	

